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Abstract: - An analytical elastic-plastic model describing the fatigue life of components with elliptical notches 
under constant amplitude loading has been proposed. The calculation occurs by integrating a crack growth law 
from a starting crack size of micro-structural dimension till up to the total fracture of the component. Plasticity 
induced crack opening and closure effects are explicitly taken into account. Thereby, calculated opening load 
levels for cracks growing in notch affected areas have been found out to be in good agreement with 
corresponding experimental values determined from notched specimens made of two different metallic 
materials. Furthermore, the comparison of experimentally determined and calculated crack growth curves for 
specimens with central notches confirm the calculation accuracy of the model. 
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1   Introduction 
Stress concentrations such as notches are failure-
critical locations that may significantly reduce the 
lifetime of components due to the cyclic plastic 
deformation that may arise in the notch area under 
service loading conditions. Thereby, short fatigue 
cracks initiated in the notch root propagate till to the 
total fracture of the component. Fracture Mechanics 
offers an efficient tool to describe the fatigue 
behaviour and predict the lifetime of engineering 
components under cyclic loading.  

Based on fracture mechanics, Vormwald [1, 2] 
proposed an analytical elastic-plastic model to 
calculate the lifetime of notched specimens till up to 
the initiation of a crack at the specimen surface with 
length of approximately 1mm under uniaxial fatigue 
loading using the cyclic J-integral as a crack driving 
force parameter. Savaidis et al. [3, 4] extended this 
procedure to multiaxial-proportional loading cases. 
Further activities to extend the procedure to non-
proportional loading cases are in progress. Dankert 
et al. [5, 6, 7] developed J-integrals for cracks in 
elliptically shaped notches and proposed a 
calculation procedure to describe crack growth 
behaviour in such notches. Recently, Brüning et al. 
[8] introduced some modifications into Dankert’s et 
al. model enabling a more precise calculation of the 
effective ranges of the crack driving force, ∆Jeff, as 
well as the applicability of the model to arbitrary 
notch situations. 

In the following, details and results of a model 
are presented within which the tools of the elastic-

plastic fracture mechanics are applied for describing 
the crack growth process. Special emphasis is given 
in the description of the opening and closure 
behaviour of cracks when growing in non-uniformly 
stressed areas affected by notches. The analytical 
procedure proposed is based on Newman’s well-
known relationships [9]. Therewith, effective ranges 
of stresses and strains can be determined and used to 
describe the effective crack driving force, i.e. the 
range of the J-integral, ∆Jeff. The accuracy of the 
crack growth calculation procedure is demonstrated 
by comparing calculation with corresponding 
experimentally determined results of uniaxially 
loaded notched plates.   
 
 
2 Fatigue life evaluation procedure 
The origin of the fatigue life evaluation procedure 
described in this section goes back to the works of 
Vormwald [1], Savaidis et al. [2] and Dankert et al. 
[7]. According to it, the fatigue lifetime of a notched 
component can be evaluated as mode I growth of a 
crack with dimensions corresponding to the size of 
the microstructure of the material lying in the very 
notch root of the component. The fatigue lifetime till 
to the initiation of this micro-crack is assumed to be 
very small. Its dimensions can be easily calculated 
from the material’s Woehler curve.  

The effective range of the J-integral, ∆Jeff, is 
being used as an appropriate parameter describing 
and controlling the crack propagation behaviour. 
The analytical relationships used to approximate the 
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value of ∆J are discussed in subsection 2.1. The 
evaluation of its effective range, ∆Jeff, is performed 
taking into account the crack opening and closure 
behaviour during cyclic loading. Details to this topic 
are given in subsection 2.2  
 
 
2.1 Crack driving force parameter 
To describe the driving force of a fatigue crack 
growing in elastic-plastic deformed material, the 
effective range of the J-integral, ∆Jeff, is applied. 
The general definition of ∆J is given by  

( )i
i

u
J W dy t ds

xG
ε∫

 ∂ ∆
∆ = ∆ −∆ ∂ 

,    (1) 

where 

( )ij ijW dε ∫∆ = ∆σ ∆ε .     (2) 

Here the increments “∆” of the stress, strain, 
traction, and displacement quantities designate the 
changes in these quantities from their respective 
reference values, whereas ∆J and Wε∆  are single-
valued functions of their arguments. 

The effective value of ∆J is calculated taking into 
account the effective stress-strain state, i.e. the 
stress-strain values at which the crack opens and 
closes under cyclic loading.  

Within the framework of a crack growth 
calculation it is essential to use approximation 
formulas for the computation of the J-integral. 
Thereby, the widely accepted approach of Shih et al. 
[10] is applied where the total value is composed of 
an elastic and a plastic part. Formulated in effective 
ranges, this approximation reads 

eff eff ,el eff ,plJ J J∆ =∆ +∆      (3) 
For the elastic part there is 

2
eff,el effJ K E′∆ = ∆      (4) 

with the modulus 2E E /(1 )′ = − ν  (E is Young’s 
modulus, ν is the Poisson’s ratio) assuming plane 
strain condition at the crack front. The stress 
intensity factor may be written as 
 eff eleff S a YK∆ = ∆ π ⋅ ⋅ ,    (5) 
where eff∆S  is the effective range of the gross 
section nominal stress. The formulation of the 
geometry correction function, elY , follows the 
suggestion of Raju, Atluri and Newman [11] for 
(semi-)circular notches. The equations (6), (7) and 
(8) present elY  for the semi-elliptical surface crack, 

( ) ( )2 4
el 1 2 3 1 2

notch shah w

Y M M 2c t M 2c t

F f f f c a 1 Qj

x x = + ⋅ + ⋅ ⋅ ⋅ ⋅ 

⋅ ⋅ ⋅ ⋅ ⋅
,        (6) 

for the quarter-elliptical surface crack, 

( ) ( )2 4
el 1 2 3 1 2

3 notch cc shah j w

Y M M c t M c t ξ ξ

ξ F q f f f c a 1 Q

 = + ⋅ + ⋅ ⋅ ⋅ ⋅  
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

,           (7) 

for the through-thickness crack, 
el notch shah wY F f f= ⋅ ⋅ .                 (8) 

For the symmetric cases studied here shahf 1=  holds. 
The finite boundary correction is taken as 

( )( ) ( )( )

( ) ( )( )

2 4
wf 1 0.025 a a w 0.06 a a w

cos p 2 a a w .

 = − ⋅ + + +  
 ⋅ + 

       (9) 

First solutions of the notch crack problem have 
been published by Neuber [12]. These solutions 
have been generalized [7] giving the influence 
function for the consideration of the two-
dimensional notch effect as 

( )

( ) ( )( )
notch

5
2.22.2 11

t, 0

0.1215F 1
1

1 K 1 C 1 1

dl

l
−−−

∞

 
 = + ⋅
 + 

 
 + − + + −
 
 

,              (10) 

where a /λ = ρ  is the ratio of the crack depth, a, to 
the notch root radius, ρ, and the remaining functions 
are as follows: 

t,K 1 2a b∞ = + ,                            (11) 

( )( )( )
22 5 2

0 2
aC 1 0.122 1 1 b / a
b

 
= + ⋅ + 
 

,               (12) 

( ) ( )a
t,3.21 2.32 0.5 K 1ρ
∞δ= − ⋅ − .             (13) 

The functions Μ1, Μ2, Μ3, Q, and fφ are identical 
to and can therefore be taken from the solution of 
Raju, Atluri and Newman [11] for cracks in circular 
notches. The quarter-elliptical surface crack requires 
an additional function 

2
ccq 1 0.05/(1 )= + +λ .               (14) 

Special modifications for considering non-
symmetric cases as well as edge-notched instead of 
centre-notched cases can be found in [7]. 

The plastic part of the effective J-integral is 
approximated by 

( )1 n 1
eff,pl eff,el pl eff,el eff refJ J Y J S S ′−∆ =∆ ⋅ =∆ ⋅ζ⋅ ∆ ∆ ,   (15) 

where ζ and refS∆  have been calibrated such that 
the results of an extensive finite element (FE) 
investigation are successfully reflected [6, 7]. The 
equations (6), (7) and (8) present the ζ -function for 
the semi-elliptical surface crack, 
 1  for  0;  a /(c 0.85)  for  / 2ζ = ϕ= ζ = ⋅ ϕ=π ,      (16) 
for the quarter-elliptical surface crack, 

6th WSEAS International Conference on SYSTEM SCIENCE and SIMULATION in ENGINEERING, Venice, Italy, November 21-23, 2007     388



0.073 0.916(a /c)

0.073 0.916(a /c)

0.51 (a /c)   for  0;  
1.05(a /c) 0.51(a /c) for / 2

−

−

ζ = ⋅ ϕ=

ζ = ⋅ ϕ=π
     (17) 

for the through-thickness crack,  1ζ = ,             (18) 

( )( )( )n
ref

n
n

S 0.0008 2K w a a / w

0.0008 2K f

′

′

′∆ = ⋅ ⋅ − +

′= ⋅ ⋅
                (19) 

In equations (15) and (19) the material para-
meters n′  and K′  of the Ramberg-Osgood-type 
description of a hysteresis loop branch are used 
 ( ) ( )1 n2 2E 2K ′′∆ε =∆σ + ∆σ .              (20) 
This means that the material is assumed to be in the 
cyclically stabilized condition and that it obeys to 
the so-called Masing behavior, i.e. that the branches 
of the hysteresis loops can be constructed by 
doubling the cyclic stress strain curve with its 
parameters n′  and K′ . 
 
 
2.2 Crack opening and closure 
Usually available approximation formulae for the 
estimation of crack opening and closure levels are 
restricted to cracks growing in homogeneous (in the 
uncracked situation) stress and strain fields. The 
most prominent of these formulae going back to 
Newman [7] has been modified by Savaidis et al 
[13] in order to take into account the influence of the 
notch field. The algorithm has been used here 
without modifications.  

The starting point is an approximate notch stress 
distribution in the uncracked situation in the crack 
line according to the Theory of Elasticity, 

( ) ( )( )6 4 2
el n

n t

x S/ f Z A s B s C s D

S/f K (x)

∆σ =∆ ⋅ ⋅ + ⋅ + ⋅ +

=∆ ⋅
       (21) 

with x as the distance from the notch root and 
 3 2

t t tA K 9K 19K 3= − + − + ,              (22) 
 3 2

t t tB K 5K 29K 9= + + − + ,              (23) 
 3 2

t t tC K K 13K 11= + − − − ,              (24) 
 3

tD (K 1)= − + ,                (25) 

 ( ) ( ) 32
t tZ K 3 s K 1 = − + +  ,              (26) 

2
t t t t

t

s (q q (K 1)(K 3)) (K 3), K 3; 

s 1/(x / 1) for K 3

= − + + − − ≠

= ρ+ =
  (27) 

 ( )( ) ( )2

t tq 4x / K 1 K 1= ρ+ − − ,               (28) 

 ( )t el nK (0)/ S/ f=σ .               (29) 
Stresses and strains in the elastic-plastic region 

are now estimated for any position x by applying the 
approximation formula proposed by Seeger and 
Beste [14], 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )( )

( )( )

2
el

12
el

n

x x E [ x x

2 u ln cosu 1 x x ]

e S/ f / E

−

∆ε = ∆σ ⋅ ∆σ ∆σ ⋅

⋅ + − ∆σ ∆σ ⋅

∆ ∆

      (30) 

 with ( ) ( )( ) ( )( )el pu 2 x 1 K 1= π ⋅ ∆σ ∆σ− − .         (31) 

The value pK  is the ratio of the load at fully plastic 
collapse to the one at the beginning of yielding in 
the notch root. This ratio has to be calculated under 
the assumption of an ideally elastic-ideally plastic 
material. The net section average strain e∆  follows 
from equation (20) where ∆ε  has to be replaced by 
∆e and ∆σ has to be replaced by nS/ f∆ , here. 
Moreover, the mean stresses and strains of loops (as 
well as the maxima max (x)σ  and max (x)ε ) for the 
material element located at the position x are 
evaluated according to conventional simulation 
techniques of the Local Strain Approach.  

The opening stress for a crack with its tip at the 
position x is now calculated applying Newman’s [9] 
formulae:  

2 3
op 0 1 2 3

max 0 1

(x) if R 0A A R A R A R , 
if R 0(x) A A R ,

σσ σ σ

σσ

σ ≥+ + += <σ +
, (32) 

with max
0 nA 0.535 cos

2 0.002 K′
σπ = ⋅  ′⋅ 

,             (33) 

 max
1 nA 0.344

0.002 K′
σ

= ⋅
′⋅
,               (34) 

 2 0 1 3A 1 A A A= − − − ,               (35) 
 3 0 1A 2 A A 1= ⋅ + − .               (36) 

The corresponding crack opening strain op (x)ε , 
the crack closure stress cl (x)σ  and the crack closure 
strain cl (x)ε  can be successively evaluated consi-
dering the Masing behaviour and the condition of 
identical crack opening and closure strains accord-
ing to [1, 13]. The effective ranges of stress and 
strain ranges in the descending branch are, 
 eff max cl∆σ =σ −σ ,               (37) 
 eff max cl∆ε =ε −ε .               (38) 

Inserting these effective ranges into equation (30) 
and (31) leads to the effective ranges, ( )el,eff x∆σ  
and effS∆ , which themselves have to be used in the 
equations (5) and (15). 
 
 
3   Results 
In this section the reliability of the main tools of the 
analytical model, i.e. the evaluation of the J-integral 
and the crack opening behavior, as well as the 
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calculation of the end-result, i.e. the crack growth 
behavior in notched components is discussed and 
verified. For this, analytical results are compared 
with corresponding numerical and experimental 
data. Detailed description is given in the following 
subsections. 
 
 
3.1 Calculation of J-values 
Taking a corner crack in a uniaxially loaded notched 
plate as an example, Figure 1 shows analytically and 
numerically determined J values for various nominal 
stress values Sbr [7].  
 

 
 
Fig. 1. Comparison of analytical and numerical 
determined J-values for a corner crack growing in a 
notched plate for various load levels 
 

The elastic part of the J-integral, Jel, has been 
derived from the stress intensity factor, K, as 
proposed by Newman and Raju. The approximation 
of the plastic part, Jpl, is based on Dankert’s [5, 6, 7] 
proposal for cracks in notches. The sum of the 
elastic and plastic terms yields the end-result for the 
approximation of the J-value. The corresponding 
numerical results have been obtained by finite 
element analysis.  

An overall good agreement can be observed, con-
firming the accuracy of the analytical evaluation 
procedure. An extensive verification of the analy-
tical calculation of J-values for various types and 
dimensions of cracks in notched plates has been pre-
sented by Dankert et al. [6, 7] and Brüning et al. [8]. 
 
 
3.2 Calculation of crack opening stresses 
To explore the calculation accuracy in refer to the 
crack opening behavior, experimental results from 
thin plates made of an aluminum alloy providing a 
quite sharp central notch subjected to fully-reversed 
uniaxial loading with constant amplitudes have been 
exemplary used. The notch stress concentration 

factor amounts to Kt=3.4. The notch surfaces were 
mechanically polished to avoid roughness-influen-
cing effects on the crack initiation.  

Figure 2 shows the calculated and measured 
opening stress values Sop normalized by the applied 
load amplitude Sa versus the crack length a 
normalized by the notch radius ρ for two different 
load (nominal stress) values, Sa=61MPa and Sa=75 
MPa, exemplary. The first load value, Sa=61 MPa, is 
slightly higher than the endurance limit of the plate. 
The deformations yielding in the notch area under 
this nominal stress are mainly elastic. On the other 
hand, the second load value, Sa=75 MPa, leads to a 
low-cycle fatigue lifetime with worth-mentioning 
plastic deformations in the notch area.  
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Fig. 2. Comparison of calculated and measured 
crack opening nominal stresses at two load levels 
 

The experimental crack opening load values were 
determined measuring the local stiffness very near to 
the crack tip by means of small strain gages, as 
shown in Ref. [1, 15]. The analytical results were 
determined by means of the algorithms given in 
section 2.2 

The experimental results show that the increasing 
of the load amplitude leads to lower Sop/Sa-values 
for certain crack lengths. This is due to the increase 
of the plastic deformation with increasing Sa. It can 
also be observed that the Sop/Sa-values increase as 
a/ρ increases. This is due to the descending 
distribution of the local stress and, therewith, the 
decreasing plastic deformation with increasing 
distance from the notch root. The crack front grows 
out of the highly stressed notch root into material 
areas with mainly elastic deformations. No 
significant changes of the Sop/Sa-values can be 
determined as the crack tip grows completely out of 
the notch area. Even at the higher load amplitude 
Sa=75 N/mm2 applied here, the Sop/Sa-value almost 
stabilizes at a constant level. For a/ρ>1, the 
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mechanisms controlling the crack propagation 
behavior follow well-known propagation laws of 
long through-thickness cracks in materials under 
uniform stress distribution.  

The calculated results are qualitatively and 
quantitatively in good agreement with the measured 
ones, confirming the accuracy of the presented 
calculation procedure using Newman’s equations 
[9]. 
 
 
3.3 Calculation of crack growth  
Experimentally determined crack growth data from 
uniaxially, fully reversed loaded plates with central 
holes (stress concentration factor Kt=2.5) are used 
here exemplary to explore the calculation accuracy 
of the analytical model.  
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Fig. 3. Comparison of calculated with experimental-
ly determined crack growth curves at Sa=200 MPa 
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Fig. 4. Comparison of calculated with experimental-
ly determined crack growth curves at Sa=300 MPa 
 

Measured and calculated crack growth curves for 
two different nominal stress amplitudes, Sa=200 
MPa and 300 MPa, are compared in Figures 3 and 4, 
respectively. The curves start at a crack depth of 
1mm at the specimen’s side from where the 
experimentally determined curves are reported. The 
number of applied cycles until this crack depth is 
reached is reported as crack initiation life. 

The load value Sa=300 MPa yields significant 
plastic deformations at the very notch root, so that 
crack initiation and growth occur during a small 
number of loading cycles. The load value Sa=200 
MPa leads to elastic-plastic deformation at the notch 
root, whereby the elastic part of the deformation is 
of approximately the same magnitude as the plastic 
one.   

A satisfactory agreement between calculated and 
experimental results can be observed at both loading 
values confirming the evaluation accuracy of crack 
growth description of the analytical model. 
 
 
4   Conclusion 
An analytical crack growth evaluation model for 
fatigue analysis of notched components has been 
discussed and verified.  

The model is based on elastic-plastic fracture 
mechanics and considers crack opening and closure 
behaviour explicitly. The effective range of the J-
integral is used as crack tip parameter. Appropriate 
approximation formulae to determine the value of 
the J-integral for mode I cracks in notched areas 
have been derived from numerical investigations. 
The effective range is calculated using Newman’s 
equations, which showed a satisfactory agreement 
with experimental crack opening stress results.  

The calculation accuracy of the model has been 
verified based on experimental results determined 
from uniaxially loaded thin plates subjected to fully 
reversed fatigue loading with constant amplitudes. A 
satisfactory agreement between experimental and 
calculated results has been observed. 
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