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Abstract: There remain two kinds of the Wilson-θ methods, namely, the Wilson-θ ① and ① methods. In the 

Wilson-θ ① method, the accelerations are not modified by the dynamic equilibrium equations; in the Wilson-θ 

① method, the accelerations are modified. The amplification matrixes of the Wilson-θ ① and ① methods for 

single-degree-of-freedom system are derived. The stabilities of the Wilson-θ ① and ① methods are examined by 

the spectral radii of the amplification matrixes. The stability of the Wilson-θ ① method is unconditional. The 

calculation results indicate: the stability of the Wilson-θ ① method is not unconditional. The stability ranges of 

the Wilson-θ ① method are also put forward. 
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1   Introduction 

Wilson et al. extended the linear-acceleration method 

in a manner that makes it numerically stable [1]. The 

basic assumption of the Wilson-θ method is that the 

acceleration varies linearly over an extended time 

step t∆θ . It has been shown that ≥θ 1.37 will assure 

the unconditional stability regardless of the 

magnitude selected for the time step. For this reason, 

the Wilson-θ method is widely used. Several 

improvements have also been carried out [2~4]. But 

there remain two kinds of the Wilson-θ methods, 

namely, the Wilson-θ ① and ① methods. In the 

Wilson-θ ① method, the accelerations )( ttx ∆+��  at 

the time tt ∆+ are not modified by the dynamic 

equilibrium equations [5]; in the Wilson-θ ① 

method, the accelerations are modified [6,7]. The 

stability of the Wilson-θ ① method is unconditional 

[1,4], but it is wrongly pointed out that the stability of 

the Wilson-θ ① method is also unconditional in some 

references [6, 7]. In this paper, the stability of the 

Wilson-θ ① method is proved to be conditional. The 

modal superposition method can reduce the response 

of a multi-degree-of-freedom (MDOF) system to the 

superposition of the single degree of freedom 

(SDOF) system responses for each mode, thus the 

stability for a SDOF system is equivalent to the 

stability for a MDOF system. In order to simplify the 

equation expression, only SDOF system is 

considered here. Naturally, the conclusions are 

applied to the MDOF system  

 

 

2   The amplification matrixes of the 

Wilson-θ  ① and ① methods 

The following operator form can be summarized 

among various direct numerical integration methods 

including the Wilson-θ ① and ① methods: 
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where )(tx , )(tx� , )(tx��  and )( ttx ∆+ , )( ttx ∆+� , 

)( ttx ∆+��  are the displacements, velocities and 

accelerations at the time t  and tt ∆+  respectively; 

1f , 2f , 3f  are the load operators, )( ttF ∆+  is the 

dynamic load; ][A  is the amplification matrix. The 

stability criterion for a direct numerical integration 

method is 1)( ≤Aρ  [5], )(Aρ  is the spectral 

radius, 3,2,1,max)( == iA iλρ , where iλ  are the 

eigenvalues of ][A  . If 1)( ≤Aρ  is found to be true, 

then the method is stable at the value of the time step 

t∆ .In Equation (1), )( ttx ∆+ , )( ttx ∆+� , )( ttx ∆+��  

are expressed as the function of )(tx , )(tx� , )(tx�� , so 

the algorithm of the Wilson-θ method would be 

rewritten as follows: 

(1) Select the time step t∆ and θ  values, calculate 

t∆= θτ  and the constants 
2

0 /6 τβ = , τβ /31 = , 

τβ /62 = , 2/3 τβ = , θββ /04 = , 
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θββ /25 −= , θβ /316 −= , 2/7 t∆=β , 

6/2

8 t∆=β . 

(2) Calculate the effective stiffness K
~

 and the 

effective force )(
~ τ+tF  according to )(tx , )(tx� , 

)(tx�� , stiffness K, damping coefficient C, mass M, 

and the dynamic force )( τ+tF  by the following 

Equations: 

CMKK 10

~
ββ ++=    (2) 

)()()()()(
~

321 txBtxBtxBtFtF ��� ++++=+ ττ   (3) 

where ,2, 22101 CMBCMB +=+= βββ    

CMB 33 2 β+=  

(3) Solve the pseudostatic equation )(
~

)(
~

ττ +=+ tFtxK  

for )( τ+tx : 

)()()()( 321 txDtxDtxDftx k
��� +++=+τ  (4) 

where KtFf k
~

/)( τ+= , KBD
~

/11 = , KBD
~

/22 = , 

KBD
~

/33 =  . 

(4) Find )( ttx ∆+�� , )( ttx ∆+� , )( ttx ∆+ , by the 

following Equations: 

)()()()( 3214 txEtxEtxEfttx k
����� +++=∆+ β       (5) 

where )1( 141 −= DE β , 
5242 ββ += DE , 

6343 ββ += DE  

)()()()( 32147 txGtxGtxGfttx k
���� +++=∆+ ββ      (6) 

where 
171 EG β= , 1272 += EG β , )1( 373 += EG β . 

)()()()( 32148 txHtxHtxHfttx k
��� +++=∆+ ββ    (7) 

where 1181 += EH β , tEH ∆+= 282 β , )2( 383 += EH β  

(5) Combining )( ttx ∆+ , )( ttx ∆+�  obtained by 

Equation (6) and (7), recalculate )( ttx ∆+��  directly 

from the dynamic equilibrium equation at the time 

tt ∆+  to reduce the calculation error, namely: 

)()()()( ttFttKxttxCttxM ∆+=∆++∆++∆+ ���     (8) 
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where MKHCGJ /)( 111 +−= , 

MKHCGJ /)( 222 +−= , MKHCGJ /)( 333 +−= . 

(6) Calculate the amplification matrixes: )( ttx ∆+��  

obtained by Equation (5), is not modified by 

Equation (8), that is, using the Wilson-θ ① method, 

the amplification matrix is ][ 1A ; )( ttx ∆+��  obtained 

by Equation (9), meets the requirement of Equation 

(8), that is, using the Wilson-θ � method, the 

amplification matrix is ][ 2A . The expressions of 

][ 1A  and ][ 2A  are as follows: 
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3   Spectral radius 2ρ  
2ρ  is the spectral radius of ][ 2A . For a SDOF 

system, the spectral radius ρ  is the function of the 

period T , damping ratio ξ , θ  value, and the time 

step t∆ . If Tt /∆  is small enough, the direct 

numerical integration method will be stable. The 

spectral radii 2ρ  for various values of θ  and Tt /∆  

are listed in Fig. 1 and Table 1.  Fig. 1 indicates the 

stability range shrinks when increasing θ  value. It is 

indicated in Table 1 that with an increase in the value 

of θ , the value of 2ρ  increases also. According to 

the stability criterion 12 ≤ρ , the Wilson-θ � 

method is stable if 1.0/ ≤∆ Tt , with 3~1=θ ; or 

if π/3/ ≤∆ Tt , with 1=θ  (namely linear 

acceleration method). In a word, the Wilson-θ � 

method is no longer unconditionally stable. 
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Fig. 1  Spectral radii 2ρ  for various values of θ    

and Tt /∆  

 

Table 1  Spectral radii 2ρ  for various values of θ  

and Tt /∆  

Tt /∆  

θ 0.1 0.2 0.5 0.6 

1.0 0.971 0.951 0.942 1.509 

1.2 0.972 0.960 1.012 1.180 

1.4 0.974 0.972 1.116 1.193 

1.6 0.976 0.986 1.222 1.340 

1.8 0.978 1.002 1.320 1.471 

2.0 0.980 1.017 1.408 1.584 

2.2 0.983 1.032 1.484 1.682 

2.4 0.985 1.046 1.551 1.766 

2.6 0.988 1.060 1.609 1.840 

�t/T 

ρ
2
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2.8 0.991 1.072 1.659 1.904 

3.0 0.993 1.084 1.705 1.960 

 

 

4   Conclusion 
The above investigation has led to the following 

conclusions: 

(1) The Wilson-θ � method, in which the 

acceleration at the time tt ∆+  meets the dynamic 

equilibrium equation, may reduces the calculation 

error, but it is conditionally stable only. 

(2) The stability ranges of the Wilson-θ ① method 

are: 1.0/ ≤∆ Tt , with 3~1=θ ; or 

π/3/ ≤∆ Tt , with 1=θ . 
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