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Abstract: There remain two kinds of the Wilson-0 methods, namely, the Wilson-0 [J and [ methods. In the
Wilson-0 ] method, the accelerations are not modified by the dynamic equilibrium equations; in the Wilson-0
[0 method, the accelerations are modified. The amplification matrixes of the Wilson-0 [ and [J methods for
single-degree-of-freedom system are derived. The stabilities of the Wilson-O [] and [J methods are examined by
the spectral radii of the amplification matrixes. The stability of the Wilson-0 [J method is unconditional. The
calculation results indicate: the stability of the Wilson-0 [J method is not unconditional. The stability ranges of

the Wilson-0 [J method are also put forward.
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1 Introduction

Wilson et al. extended the linear-acceleration method
in a manner that makes it numerically stable [1]. The
basic assumption of the Wilson-0 method is that the
acceleration varies linearly over an extended time
step OAt . It has been shown that @ > 1.37 will assure
the wunconditional stability regardless of the
magnitude selected for the time step. For this reason,
the Wilson-O0 method is widely used. Several
improvements have also been carried out [2~4]. But
there remain two kinds of the Wilson-O methods,
namely, the Wilson-0 [ and [J methods. In the
Wilson-0 [1 method, the accelerations X(f + At) at

the time ¢+ At are not modified by the dynamic
equilibrium equations [5]; in the Wilson-0 [J
method, the accelerations are modified [6,7]. The
stability of the Wilson-0 ] method is unconditional
[1,4], but it is wrongly pointed out that the stability of
the Wilson-0 [ method is also unconditional in some
references [6, 7]. In this paper, the stability of the
Wilson-O [1 method is proved to be conditional. The
modal superposition method can reduce the response
of a multi-degree-of-freedom (MDOF) system to the
superposition of the single degree of freedom
(SDOF) system responses for each mode, thus the
stability for a SDOF system is equivalent to the
stability for a MDOF system. In order to simplify the
equation expression, only SDOF system is
considered here. Naturally, the conclusions are
applied to the MDOF system

2 The amplification matrixes of the
Wilson-O [ and [ methods
The following operator form can be summarized

among various direct numerical integration methods
including the Wilson-0 [J and [J methods:

x(t + At) x(1) 5
Meranb =[xl lFeran D
§(t+ A1) 0| |7

where x(¢), x(¢), X(t) and x(¢ +At), x(t +At),
X(t+ At) are the displacements, velocities and
accelerations at the time ¢ and 7+ Af respectively;
fi» />, f; are the load operators, F'(t + At) is the
dynamic load; [ A] is the amplification matrix. The
stability criterion for a direct numerical integration
method is p(A4) <1 [5], p(A) is the spectral

,1 =123, where A, are the

radius, p(A4) = max|/1i
eigenvalues of [ 4] . If p(A) <1 is found to be true,

then the method is stable at the value of the time step
At .In Equation (1), x(z + At), x(t + At), X(t + At)

are expressed as the function of x(¢), x(¢), X(¢), so

the algorithm of the Wilson-0 method would be
rewritten as follows:

(1) Select the time step Atand € values, calculate
7 = 0At and the constants f, = 6/7%, B =37,

py=6lc , py=t/2 . p,=p10
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Bs=-5,10 ,
By =At* /6.
(2) Calculate the effective stiffness K and the

effective force F (t+7) according to x(¢), x(¢),
X(t), stiffness K, damping coefficient C, mass M,

B, =1-310 , B, =At/2 ,

and the dynamic force F(z+7) by the following
Equations:

K=K+ p,M+p,C )

F(t+71)=F(t+7)+ Bx(t) + B,x(t) + B,x(t) (3)

where B, = g M + B,C, B,=p,M +2C,
B, =2M+ B,C
(3) Solve the pseudostatic equation Kx(¢ + 7) = F(z + 7)
for x(t+7):
x(t+7)=f, + Dix(t)+ D,x(t)+ D,X(t) (4)

where f, =F(t+7)/K, D,=B, /K, D,=B,/K,
D,=B,/K .
(4) Find X(t+At), x(t+At), x(t+At), by the
following Equations:
X(t+A)= B, f, +Ex(@)+E,x(¢) +E 5%(1) &)
where E, = 8,(D, -1), E, =3,D, + s, Ey = B,D; + f3,
x(t+At) = B, B, f. +G x(t) +G,x(t) +Gi(t)  (6)
where G, = .E,, G, =F,E, +1, G, = B,(E, +1).

x(t+ A1) = By B, fi +H x(t) +H pi(0) +H (1) (7)
where H, = BiE, +1,H, = JE, + At ,H, = B(E; +2)
(5) Combining x(z+ At) , x(¢+ At) obtained by
Equation (6) and (7), recalculate X(z + A¢) directly

from the dynamic equilibrium equation at the time
t + At to reduce the calculation error, namely:

Mi(t+At)+ Cx(t+ At)+ Kx(t + At) = F(t+ At)  (8)
Xt +An) = (F(t+A) - B,5,/.C - BB KM )
+J px(t) +J X(1) +J (1)
where J, =—(CG, +KH\))/ M )
J, =—(CG,+KH,)/M , J, =—(CG,+KH,)/M .
(6) Calculate the amplification matrixes: X(¢ + At)

obtained by Equation (5), is not modified by
Equation (8), that is, using the Wilson-0 [ method,

the amplification matrix is [ 4, ]; X(¢ + Af) obtained

by Equation (9), meets the requirement of Equation
(8), that is, using the Wilson-O [ method, the

amplification matrix is [4,]. The expressions of
[4,] and [4,] are as follows:

H H, H, H, H, H,
[A1]= Gl Gz G3 > [A2]= Gl Gz Gs
E, E, E JJ, J

3 Spectral radius p,

p, is the spectral radius of [4,]. For a SDOF
system, the spectral radius p is the function of the
period 7', damping ratio &, @ value, and the time
step At . If At/T is small enough, the direct
numerical integration method will be stable. The
spectral radii p, for various values of @ and At/T
are listed in Fig. 1 and Table 1. Fig. 1 indicates the
stability range shrinks when increasing @ value. It is
indicated in Table 1 that with an increase in the value
of @, the value of p, increases also. According to
the stability criterion p, <1, the Wilson-0 [
method is stable if A¢/T <0.1, with d=1~3; or
if At/T<~3/z , with 6=1 (namely linear
acceleration method). In a word, the Wilson-6 []
method is no longer unconditionally stable.
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Fig. 1 Spectral radii p, for various values of &

and At/ T

Table 1 Spectral radii p, for various values of &
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and At/T
0 (4T 00 0.2 0.5 0.6
1.0 0.971 | 0951 |0942 |1.509
12 0972 10960 |1.012 | 1.180
14 0974 | 0972 | 1.116 | 1.193
16 0.976 | 0.986 | 1222 | 1.340
18 0.978 | 1.002 | 1.320 | 1471
2.0 0.980 | 1.017 | 1.408 | 1.584
22 0.983 | 1.032 | 1484 | 1.682
24 0.985 | 1.046 | 1.551 | 1.766
26 0.988 | 1.060 | 1.609 | 1.840
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2.8 0.991 1.072 | 1.659 | 1.904

3.0 0993 |[1.084 |[1.705 | 1.960

4 Conclusion

The above investigation has led to the following
conclusions:

(1) The Wilson-0 [ method, in which the
acceleration at the time 7+ Af meets the dynamic
equilibrium equation, may reduces the calculation
error, but it is conditionally stable only.

(2) The stability ranges of the Wilson-0 1 method
are: At/T<0.1 , with 8=1~3 ; or

AZ/TS\/E/E,With 0=1.
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