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Abstract: - Construction planners are encountered with challenge of optimum resource utilization to 
compromise between different and usually conflicting aspects of projects. Completion date and cost if project 
are among the crucial aspects of each project. Such problems are difficult to solve because of not having 
unique solutions. For time-cost optimization problems, as combinatorial optimization problems one can apply 
heuristics or mathematical programming. In this paper, a new improved multi-objective Genetic algorithm is 
used to solve the time-cost trade-off optimization problem. An 18 activity example is analyzed to illustrate its 
capabilities in generating optimal/near optimal solutions.  
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1   Introduction 
One of the crucial fields of construction project 
planning is the appropriate trade-off between time 
and cost. Construction planners are encountered 
with challenge of optimum resource utilization to 
compromise between aspects of project especially 
time and cost which are important facets of every 
project. The decisions made by planners is function 
of allocated resources including crew sizes, 
equipment and materials which can influence the 
time and cost of implementing project activities. 
Considering indirect costs which independent of 
direct costs increase as time goes by, the relation 
between time and cost will be more complicated. If 
more productive equipment or workers are used the 
duration of the activity will decrease and naturally, 
if durations of activities are compressed the cost of 
them will increase due to more resources allocated 
for their rapid accomplishment. Obviously some 
activities can be expedited at lower costs than 
others, therefore, when a choice is presented for 
expedition, it is more efficient to compress the 
cheaper ones prior to those with expensive costs. 
This important trade-off is of interest for researchers 
and industry practitioners in academic and real field 
problems. Developing efficient and robust 
algorithms to solve highly complex time-cost-
tradeoff problems is still a challenging job. On the 
other hand, practitioners and decision makers are 
willing to have a reliable trade off function between 
the time and cost of alternative methods of 
performing the project. Since time-cost optimization 

is a combinatorial optimization problem involving a 
finite number of feasible solutions, in principle, the 
optimal solution can be found by enumeration. 
However, as the major construction projects often 
involve numerous activities, it is almost impossible 
to evaluate all possible combinations within a short 
period of time and at a reasonable cost (Ng et al. 
2000). A novel searching tool would then be 
worthwhile for comprehensive yet efficient TCO 
problem. 
The existing techniques for the Time-Cost Trade-off 
Problem (TCTP) can be categorized as two distinct 
classes: heuristic methods, and mathematical 
programming approaches (Feng et al. 1997 and Li 
and Love 1997). The weaknesses of the heuristics 
and mathematical methods are widely documented 
in the literature (e.g. Zheng et al. 2002), but the 
major deficiency with most of the mathematical 
models is their inability to handle more than one 
objective. In addition, these methods often employ 
the hill climbing algorithms, which has only one 
randomly generated solution exposed to some kind 
of variation to create a better solution.  
Efficient approach to a TCO problem requires a 
multi-objective optimization algorithm which allows 
for greater freedom in exploring possible solutions 
to reduce the likelihood of being trapped in local 
optima (Knowles et al. 2001). A time-cost trade-off 
problem is in fact a multi-objective optimization 
problem which selecting appropriate options for 
every activity to obtain the objective of time and 
cost is the goal. In this paper an improved multi-
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objective genetic algorithm will be used to solve the 
time-cost trade-off optimization problem. 
 
 

2   Multi-Objective Genetic Algorithms 
(MOGAs) 
2.1 GAs 
The usual form of genetic algorithm was described 
by Goldberg (1989). A genetic algorithm is a search 
technique used in computing to find optimal or near 
optimal solutions to optimization and search 
problems, and is often abbreviated as GA. Genetic 
algorithms are classified as global search heuristics 
and particular class of evolutionary algorithms that 
use techniques inspired by evolutionary biology 
such as inheritance, mutation, selection, and 
crossover. 
Genetic algorithms are implemented as a heuristic 
computer simulation approach in which a population 
of abstract chromosomes of candidate solutions to 
an optimization problem evolves toward better 
solutions. The evolution usually commences from a 
population of randomly generated individuals and 
happens in generations. In each generation, the 
fitness of every individual in the population is 
evaluated, multiple individuals are stochastically 
selected from the current population based on their 
fitness, and modified by genetic operators to form a 
new population. The new population is then used in 
the next iteration of the algorithm. 
 
 
2.2   Multi-objective Optimization 
Many problems of the real-world are optimization of 
more than one objective function at the same time. 
The fact of optimizing several objectives 
simultaneously has made the problem solving more 
complicated in multi-objective optimization. The 
existence of many multi-objective problems in the 
real-world, their intrinsic complexity and the 
advantages of metaheuristic procedures to deal with 
them has strongly developed this research area in the 
last few years (Gandiblex et al, 2004; Goldberg 
1987). 
According to Zitzler et al. After the first studies on 
multi-objective optimization appeared in the mid-
eighties (Schaffer,1984,1985; Fourman, 1985) 
several different evolutionary algorithm 
implementations were proposed in the years 1991-
1994(Kursawe,1991; Hajela and Lin,1992; Fonseca 
and Fleming 1993; Horn et al., 1994; Srinvas and 
Deb, 1994). Later, these approaches were 
successfully applied to various multi-objective 
optimization problems. In recent years, some 
researchers have investigated particular topics of 

evolutionary multi-objective search, while others 
have concentrated on developing new evolutionary 
techniques. 
In the presence of various techniques for multi-
objective optimization problem there has been little 
or no exhaustive comparison between these methods 
until 1999, 2000 when Zitzler et al. compared them 
systematically using six chosen test functions. As a 
result of this research it can be concluded that there 
is a clear performance gap between SPEA and 
NSGA and remaining algorithms. Elitism is an 
important factor which is used in mentioned high-
performance algorithms. Herein an approach based 
on multi-objective genetic algorithm together with 
innovative genetic operators and elitism factor will 
be applied to time-cost trade-off problem. 
 
 
2.2.1   Pareto front 
The goal of multi-objective optimization problems is 
to find the best compromise between multiple and 
conflicting objectives. Usually there is more than 
one solution which optimizes simultaneously all the 
objectives and there is no distinct superiority 
between these solutions. Therefore we face with a 
set of nondominated solutions in these problems that 
is called Pareto optimal. Among the feasible 
solutions, a solution is identified as dominant if it is 
better than all other solutions in all of the considered 
objectives simultaneously. Among the feasible 
solutions, those belonging to Pareto front are known 
as nondominated solutions, while the remainder 
solutions are known as dominated. Since none of the 
Pareto set solutions is absolutely better than the 
other nondominated solutions, all of them are 
equally acceptable as regards the satisfaction of all 
the objectives. For a set of possible solutions Fig. 1 
demonstrates the dominated and nondominated 
(Pareto front) solutions. 

 
Fig. 1. Pareto Front and ranked solutions for a sample set of 
possible solutions 
 

 

3   Problem Description and 
formulation 
Reaching the best set of nondominated solutions 
forms the goal of time-cost optimization problem. 
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Strategies of performing activities determine the 
total time and cost of project. These strategies for 
each activity differ in resources utilization and they 
have an expected daily production and cost rate, as 
such we have few feasible strategies for each 
activity. Each combination will result in a specific 
finish date and total cost. As a result of numerous 
possible combinations of these allocated strategies 
there will be a large searching space. Project 
completion date is determined by scheduling the 
activities using the assigned activity durations. The 
project cost is equal to the sum of the cost of all the 
individual activities that make up the project. Other 
costs can easily be included in the project cost to 
make it more comprehensive if desired. For 
example, indirect and overhead costs can be 
expressed as a function of the project duration. 
Number of the possible combinations in a project 
with i activities and n resource utilization options for 
each activity will be equal to n× i. As a case in 
point, the total number of alternative combinations 
of time and cost for a project with only 18 activities 
and 4 possible resource utilization options for each 
activity will exceed 6 billion. Here arises the major 
challenge of construction planners; large search 
space and embedded optimal solution in the heart of 
this complexity. The present approach with a robust 
searching tool can be applied for such problems. 
Multi-objective time-cost trade-off problem can be 
solved by three different methods. One seeks the 
satisfactory solution from the non-inferior solutions 
depending on the experiences and knowledge of 
decision-makers, whereas the determination of the 
non-inferior solutions is very difficult and 
complicated. The second converts the multi-
objective problem to a single-objective problem, and 
then utilizing a single-objective optimization 
approach to find the satisfactory solution. The final 
one utilizes a multi-objective optimization approach 
to find the satisfactory solution. The approach 
proposed in this paper belongs to the latter one, for 
which not only provides the satisfactory solution, 
but also determines the nondominated set that is 
beneficial for the further decision-making process.  
As mentioned, TCO problem mainly concentrates on 
selecting appropriate options for every activity to 
obtain the objective of time and cost of a project. 
The objective of time may be presented as: 
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Where )(k
it represents the duration of activity i when 

performing the kth option; and )(k
ix stands for the 

index variable of activity i when performing the kth 

option. If =)(k
ix 1 then the activity i perform the kth 

option, while =)(k
ix  0 means not. The sum of index 

variables of all options should be equal to 1. 
kL means the activity sequence on the kth path, and 

=kL {i1k, i2k, …, ink} where ijk represents the 
sequence number of activity j on the kth path. 
L stands for the set of all paths of a network, and 
L＝{ kL   k＝1, 2,…, m}, where m symbolizes the 
number of all paths of a network.  
The total cost of a project consists of two parts: 
direct cost and indirect cost. Direct cost is 
determined as the sum of direct cost of all activities 
within a project network. On the other hand, indirect 
cost is composed of the expenditure on management 
during project implementation, which depends 
heavily upon the project duration, i.e. the longer the 
duration, the higher the indirect cost.  
In a real construction project, it is feasible to 
evaluate indirect cost per time unit to calculate the 
total cost. Subsequently, equation 2 can be 
forwarded to compute the total cost of a project.  
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Where )(k
idc  direct cost of activity i under the kth 

option, which equals to the quantities of the activity 
multiplied by its price; =)(k

iic indirect cost per time 
unit of activity under the kth option, which can be 
generated by experts through estimation or derived 
from division of the indirect cost of budget report 
according to contractual duration; and A = set of 
activities in a network. 
 
 
4   Proposed Multi-Objective Genetic 
Algorithm 
As mentioned the firs step in the procedure of 
modeling the problem is formulation of the Gene 
and chromosome of the genetic algorithm. Fig. 2 
illustrates the structure of the proposed gene and 
chromosome for a problem with N activities and k 
possible resource utilization option for each activity. 
 

1 2 3 4 5 6 . . . N 
4 3 k 2 5 4 . . . 4 

 
Fig. 2 Chromosome Formation 
 
In fact each chromosome is a possible solution for 
the problem in which genes are representative of 
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resource utilization options. The present model is 
implemented in the following steps: 
Step 1: Determine problem parameters such as 
number of activities, precedence relationship of 
activities, available construction methods for each 
activity and  their corresponding time and cost. 
Step 2: Determine model parameters such as 
population size, number of generations, selection 
strategy, crossover rate and method, mutation rate 
and method.  
Step 3: Generate initial solutions to establish the 
first population of the model. As mentioned each 
solution represents a possible combination of 
selected construction method for each activity. 
Step 4: Calculate objective functions of project; total 
duration and total cost. Total duration will be 
calculated using Eq.1 and total cost of project will 
be calculated based on Eq.2. 
Step 5: Calculate Pareto optimal rank for each 
solution in the set of generated solutions and transfer 
Pareto optimal (Rank 1) to the archive. 
This approach classifies existing solutions to 
nondominated fronts based on dominance capability 
of answers. As such the population is ranked 
according to a dominance rule, and then each 
solution is assigned a fitness value based on its rank 
in the population. It is the intent of the model to 
minimize the time and cost of the project and 
therefore a lower rank corresponds to a better 
solution here. Fig. 1 illustrates the approach for a 
sample set of solutions. Thereafter set of solutions 
which is categorized as rank 1 will be transferred to 
an archive set. 
In fact this is a vehicle for elitism approach. In 
single-objective genetic algorithms elitism is 
implemented surviving the best solution found so far 
to the next generation. Therefore in multi-objective 
problems all the nondominated answers in the 
archive are elite solutions. Using this point of view 
these solutions are stored and reintroduced to the 
population. 
Step 6: select and reproduce based on the ranked 
solutions. 
For this purpose following equations will be used to 
favorite answers with lower optimal ranks: 

)( max3.1

/
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i
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f
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Where Pi is the probability of selection and fi is the 
fitness value calculated for each solution based on 
its rank (Ranki) and maximum found rank (Rankmax) 
in the population. 
Step 7: Create new child population using selected 
solutions and crossover operator as well as mutation.  

Step 8: Transfer archived solutions to the new 
population. 
In this step archived elite solutions which mentioned 
in step 4 will be reintroduced to the population. 
Step 9: verify if the end condition is met or not. If 
not the same steps from step 4 will be performed for 
new generation. 
Fig. 3. represents a sample flowchart of proposed 
Improved MOGA for time-cost optimization. 

 
Fig. 3. Flowchart of Proposed Algorithm 

 
5   Case Study 
In order to illustrate the concept and performance of 
the proposed algorithm, an 18 activity network 
configuration is used as a case study (Fig. 3). The 
example was originally introduced by Feng et al. 
(1997) to illustrate construction time-cost trade-off 
analysis. The total direct cost of the project is 
$99,740 for project duration of 169 days. For this 
simple example, there is an average of 3.4 units of 
resource utilization options to construct each of the 
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18 activities, which produces more than 3.6 billion 
(i.e., 184.3 ) possible combinations for delivering the 
entire project (Khaled El-Rayes, and Amr Kandil, 
2005). Each of these possible combinations leads to 
a unique impact on project performance, and the 
main challenge here is to search this large solution 
space to find solutions that establish an optimal/near 
optimal and delicate balance among construction 
time and cost. 
 

 
Fig. 4. Network Diagram of 18 Activity Case Example 
 

Running the model using the mentioned data set 
resulted in selection of four nondominated solutions. 
To verify the capability and efficiency of proposed 
algorithm, it is compared with that of weighted 
method which was modeled by Zheng et al. (2005) 
for the same example. Zheng basically has used 

adaptive weighted method approach in his work. 
Moreover three modules which differ in selection 
and mutation methods are developed. The first one 
named module 1 is modeled with fixed mutation rate 
and Roulette wheel as a selection approach. Module 
2 is designed with adaptive Mutation rate which is 
based on a formula that reduces its rate as 
generations go on and Pareto ranking for selection. 
Module 3 is implemented using adaptive mutation 
rate and Pareto ranking as selection strategy, 
furthermore niche formation is applied in this 
module. Niche formation by fitness sharing was first 
introduced by Goldberg (1989) to promote uniform 
sampling and maintain population diversity. Results 
reported by Zheng for all three mentioned modules 
are compared in Table. 1 with present proposed 
algorithm. It can be seen that the present model 
yields four nondominated solutions in early 
generation numbers as well as dominating all 
Nondominated solutions derived from three modules 
of weighted method(Table 1). 
Furthermore the same example was analyzed 
without considering indirect cost which resulted in 
selection of 44 nondominated solutions as shown in 
Fig. 4. 

 
Table 1 Comparision of Pareto  Front Generated by three modules(Zheng,2005) and Proposed Improved MOGA 
   Module 1  Module 2  Module 3  Improved MOGA 

Generation No.   Time 
(days) 

Cost 
($)  Time 

(days) 
Cost 
($)  Time 

(days) 
Cost 
($)  Time 

(days) 
Cost 
($) 

100 1  108 300820  106 283508  100 293720  100 283,320 
 2  11 298120  112 276708  101 290520  101 279,820 
 3  117 282420  NA NA  110 280320  104 276,320 
            110 271270 
              

200 1  108 300820  105 288208  100 293720  100 283,320 
 2  111 298120  106 281708  101 290220  101 279,820 
 3  117 282420  112 276708  110 280320  104 276,320 
 4  NA NA  NA NA  NA NA  110 271270 
              

300 1  108 300820  103 292308  100 293720  100 283,320 
 2  111 298120  105 288208  101 290220  101 279,820 
 3  117 282420  106 281708  104 286720  104 276,320 
 4  NA NA  112 276708  110 275720  110 271270 
              

400 1  108 300820  103 287708  100 287720  100 283,320 
 2  111 298120  106 281708  101 284020  101 279,820 
 3  117 282120  112 276708  104 281520  104 276,320 
 4  NA NA  NA NA  110 287720  110 271270 
              

500 1  108 300820  102 290870  100 287720  100 283,320 
 2  111 298120  103 286070  101 284020  101 279,820 
 3  117 282420  106 281708  104 280020  104 276,320 
 4  NA NA  112 276708  110 273720  110 271270 
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6   Conclusion 
Construction time-cost trade-off problems are 
optimization problems in which existing techniques 
using heuristic and mathematical programming may 
not evaluated as efficient and /or as accurate as 
needed to locate the Pareto front in a real-life 
construction projects. Herein An Improved 
Nondominated Archiving Multi-Objective Genetic 
Algorithm together with approach of elitism is 
applied to time-cost trade-off problem. The 
efficiency of the proposed algorithm is verified by a 
medium-size project example which confirms the 
capability of model in generating Pareto optimal. 
Moreover, the model was implemented to optimize 
time-cost trade-off for the same example and 
compared to the results of MAWA approach (Zheng 
2005) which validated the robust capabilities of the 
present model. The efficiency of the new algorithm 
is due to searching only a small fraction of the total 
search space. This approach provides an attractive 
alternative for the solution of the construction multi-
objective optimization problems in comparison with 
commonly practiced metaheuristic algorithms. 
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