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Abstract - This is a series of studies to discuss the partitioning capabilities of multi-layer perceptrons on 

dis-jointly removed non-convex (DJRNC) decision regions. There are two papers proposed in the series of 

studies including part A and part B.  In part A, we propose a network structure to implement DJRNC decision 

regions using multi-layer perceptrons. In the proposed structure, all weights and the parameters of the 

activation functions are pre-determined when a DJRNC decision region is established. No constructive 

algorithm is needed for implementing the DJRNC decision regions and each weight determined by this paper is 

either 1 or –1.  This makes the hardware implementations of the proposed network structures easy. Three cases 

are discussed in this paper including single, nested, and disconnected decision regions. The first case is shown 

in part A, and the rest of two are demonstrated in part B.  We also provide three multi-layer perceptrons to 

implement the three decision regions and prove the implementation feasibilities of the proposed model  

 
Key-Words: - Multi-layer perceptron; Nested decision region; Non-convex decision region; Disconnected 

decision region. 
 
 

1. Introduction 
A multi-perceptron is one of popular neural network 
structures for implementing classification problems. 
Adjustable weights are used to connect the nodes 
between adjacent layers and optimized by training 
algorithms to get the desired classification results. 
However, using training algorithm to optimize the 
weights probably needs thousands of iterations and 
hence spends a lot of computational time. Related 
studies about partitioning capabilities of multi-layer 
perceptrons on vertical and horizontal partitioning 
have been discussed in [1-4]. The rest of studies on 
the partitioning capabilities of multi-layer 
perceptrons, see [5-13].  

The implementation feasibility of convex 
recursive deletion regions has been discussed in [9] 
where the authors proposed a constructive algorithm 
to determine the parameters (weights and thresholds) 
of two layer perceptrons.to implement the convex 
recursive deletion decision regions. Non-convex 
decision regions are more complicated case. In this 
paper, the author presents a network structure to 
implement Dis-Jointly Removed Non-Convex 
(DJRNC) decision regions using multi-layer 
perceptrons. In the proposed structure, all weights 
and the parameters of the activation functions are 
pre-determined when a DJRNC decision region is 

established. No constructive algorithm is needed for 
implementing the DJRNC decision regions and each 
weight determined by this paper is either 1 or –1. 

In the following, we present an illustrative 
example to explain how a two-layer perceptron 
implements a convex decision region.  For the 
visual reason, in this paper we use two-dimensional 
examples.  It is easy to generalize them to 
multi-dimensional cases.  

Fig. 1(a) is a convex decision region containing 
a convex polyhedron (C) which is bounded by 5 
hyper-planes: z1, z2, z3, z4, and z5. In this figure, the 
dotted rectangular box indicates the input space of 
the convex decision region where the shaded area 
belongs to class A while the blank area belongs to 
class B. We call the hyper-planes bounding the 
convex polyhedron “bounding hyper-planes”.  A 
bounding hyper-plane divides the input space into 
two linearly separable half hyper-planes. The ‘1’ side 
of a bounding hyper-plane is the half hyper-plane 
containing the convex polyhedron, and ‘0’ side is the 
other half hyper-plane, as indicated in Fig. 1(a). 

 In a convex decision region, a pattern is said to 
be in the convex polyhedron if and only if it is on the 
‘1’ sides of all bounding hyper-planes of the convex 
polyhedron.  It has been known that a convex 
decision region can be implemented by a two-layer 
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perceptron where the first layer forms the convex 
decision region and the second layer performs the 
classifications.  The first layer weights are 
pre-determined when the decision region is formed. 
The second layer weights are all 1’s. We use a hard 
limiter as an activation function in the second layer 
node to get the desired classification results. The 
hard limiter is of the form [1, 8] 
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where hθ is the threshold and set to be equal to the 
number of the bounding hyper-planes of the convex 
polyhedron.  For example, the convex decision 
region shown in Fig. 1(a) can be implemented by the 
two-layer perceptron shown in Fig. 1(b) where the 
threshold ( hθ ) of the hard limiter in the second layer 
is set to 5 since the convex polyhedron is bounded by 
5 bounding hyper-planes (z1 to z5). 

Nested convex decision region (or convex 
recursive deletion region) problems have been solved 
by a constructive algorithm via two-layer perceptrons 
[5]. 

Next, we give some definitions necessary for the 
paper.   

A DJRNC polyhedron D is a polyhedron 
obtained by dis-jointly removing a series of convex 
polyhedrons (C1, C2, …, Cn) from an original convex 
polyhedron (C0), given by 
 

nCCCCD −−−−= ⋯210             (2) 

 
where C0 (the original convex polyhedron) is called 
the “minimum containing convex polyhedron 
(MCCP)” of D; C0, C1, …, and Cn are called the 
“removed convex polyhedrons (RCPs)” of D. 

The word “dis-jointly” means that any two of 
the RCPs do not have any common bounding 
hyper-planes except for the bounding hyper-planes of 
the MCCP. 

Fig. 2(a) shows a DJRNC polyhedron (D) in a 
single DJRNC decision region (defined in the next 
section).  Fig. 2(b) shows the MCCP and the three 
RCPs of the DJRNC polyhedron (RCP1, RCP2, and 
RCP3).  Fig. 2(c) demonstrates the bounding 
hyper-planes of the MCCP and the three RCPs.  The 
‘0’ sides and ‘1’ sides of these bounding hyper-planes 
are also displayed in Fig. 2(c).   

2. Model and Feasibility 

2.1 Single DJRNC decision region Model  

A “single DJRNC decision region” is a region 

containing only one DJRNC polyhedron. Fig. 2 (a) is 
also an example of a single DJRNC decision region. 

A single DJRNC decision region can be 
implemented by a three-layer perceptron where all of 
the parameters (weights and thresholds) are constants.  
In the three-layer perceptron, the first layer serves to 
form the decision region, the second layer detects 
whether a pattern resides in the MCCP or a particular 
RCP, and the third layer makes the final 
classification. Each node in the second layer is 
associated with the MCCP or a particular RCP with 
one-to-one correspondence. We use the same 
notation to present a node of the second layer and its 
corresponding MCCP or RCP.  The weights of the 
second layer are all 1’s.  Each of the third layer 
weights is determined as follows: if it is connecting 
the MCCP node with the third layer node, the 
weights is set to 1; if it is connecting any of the RCPs 
nodes with the third layer node, the weight is set 
to –1. The threshold for a particular node of the 
second layer is equal to the number of the bounding 
hyper-planes of the MCCP or an RCP associated 
with the particular node. The threshold ( hθ ) for the 
third layer node (the output node) is 1.  

2.2 Feasibility 

We prove the implementation feasibility by 
considering the following cases: 
(1) If the pattern doesn’t reside in the MCCP, the 

final classification result is 0 (class B). 
(2) If the pattern resides in the DJRNC polyhedron, 

only the MCCP node produces a ‘1’. The final 
classification result is 1 (class A). 

(3) If the pattern resides in a particular RCP, both 
the MCCP and the particular RCP produce ‘1’s. 
The weight connecting the MCCP node with 
the third layer node is 1, and the weight 
connecting the particular RCP with the third 
layer node is –1.  The sum of them is 0.  
Therefore the final classification is 0 (class B). 
Fig. 3 is the three-layer perceptron to implement 

the single DJRNC decision region shown in Fig. 2 
(a). 

3. Conclusions 

We proposed a neural network model to solve the 
DJRNC decision regions using multi-layer 
perceptrons. In the proposed multi-layer perceptrons, 
all weights and the parameters of the activation 
functions are pre-determined when a DJRNC 
decision region is established. No constructive 
algorithm is needed for implementing the above 
three decision regions. Each weight determined by 
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this paper is either 1 or –1. We presented three cases 
to discuss, in practical, the capabilities of multi-layer 
perceptrons on DJRNC decision regions including 
single, nested, and disconnected DJRNC decision 
regions.  

There are two papers proposed in the series of 
studies including part A and part B.  In this paper 
(part A), we defined single DJRNC decision regions 
and presented the implementing multi-layer 
perceptrons for the DJRNC decision regions.  We 
also proved the implementation feasibility for the 
single DJRNC decision region. 
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(a) The convex decision region.  
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(b) The two-layer perceptron to implement the convex decision region shown in (a). 

Fig. 1: An illustrative example of a convex decision region implemented by a two-layer perceptron. 
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(b) The MCCP and the three RCPs (RCP1, RCP2, and RCP3) of DJRNC polyhedron D. 

(c) The bounding hyper-planes 

Fig. 2: An illustrative example of a single DJRNC decision region 
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Fig. 3: The three-layer perceptron to implement the single DJRNC decision region shown in Fig. 2(a). 
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