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Abstract: We investigate an extended model of spiking neural P systems incorporating astrocytes and their excita-
tory or inhibitory influence on axons between neurons. Using very restricted variants of extended spiking neural P
systems with excitatory and inhibitory astrocytes we can easily model Boolean gates like NAND-gates as well as
discrete amplifiers.
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1 Introduction

In this paper we integrate several models describing
the functioning of the human brain based on the bio-
logical background. New models in the area of neural
computation were introduced based on the observa-
tion that neurons send electrical impulses (also called
spikes) along axons to other neurons, e.g., see [4],
[10], [11]. P systems (membrane systems) were in-
troduced as a formal model describing the hierarchi-
cal structure of membranes in living organisms and
the biological processes in and between cells (an in-
troduction to this field can be found in [16], for the
actual state of the art in this area we refer the reader
to [22]).

Combining the ideas of P systems and spiking
neurons, a new variant of so-called tissue P systems
(see [12]) called spiking neural P systems was inves-
tigated, e.g., see [8], [17]. An extended version of
spiking neural P systems allowing to send different in-
formations along the axons between two neurons was
investigated in [1]. In spiking neural P systems (see
[8]), the contents of a neuron consists of a number of
so-called spikes. The rules assigned to a cell allow
us to send information to other neurons in the form of
electrical impulses – spikes – which are summed up at
the target cell; the application of the rules depends on
the contents of the neuron. In [1], an extended version
of this original model of spiking neural P systems was
introduced based on some other observations from bi-
ology; for example, the spikes coming along differ-

ent axons may cause effects of different magnitude.
In [3], the role of inhibitory axons in extended spik-
ing neural P systems was investigated (the arrival of
spikes in the neuron affected by spikes along an in-
hibitory axon is inhibited).

Until recently, astrocytes, a sub-type of macroglia
have been understood as star-shaped glial cells span-
ning around neurons in the central nervous system
(CNS). Their main function was suspected to be the
metabolic support of the neurons with glucose and
nutrients as well as metabolic support for endothelial
cells for keeping the blood barrier. They also were
found to play a critical role in the neuronal survival
and differentiation or neurite outgrowth. For more
details see [18]. More recent biochemical literature,
however, has put forward the idea that astrocytes have
an important role in the plasticity of the CNS namely
the synaptogenesis [7]. Astrocytes were also found to
influence the concentration of neuroactive substances
[13] and may serve as intermediaries in neuronal reg-
ulation of blood flow [15]. It also has become appar-
ent that astrocytes themselves form an information-
transmitting network by passing elevations of Cal-
cium (Ca2+) [5][6]. It has been found that Ca2+ el-
evations in astrocytes modulate neuronal excitability
and synaptic transmission. On the other hand, astro-
cytes are shown to be influenced by neurotransmitters
[19] that might influence Ca2+ concentrations indicat-
ing that astrocytes might discriminate between differ-
ent levels of neuronal activity [18]. It is also suggested
that astrocytes may respond to synaptic activity in lo-

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007      320



cal domains [14] only and that these local domains
may also discriminate between neurotransmitters (see
[18]). Hence, a complex feedback loop of neuronal
modulation exerted by astrocytes can be postulated.

The influence of astrocytes in the functioning of
the human brain has also been investigated in [20],
where to the interaction between the networks of neu-
rons and astrocytes in addition the influence of the
capillary system in connection with the networks of
neurons and astrocytes was modelled. Based on the
biological background, but without claiming to model
it in a decent way, we develop a model of membrane
systems incorporating some specific features of com-
plex systems consisting of two interacting networks
of neurons and astrocytes. For the signals sent from
one neuron to another one, we base our model of ex-
tended spiking neural P systems with excitatory and
inhibitory astrocytes on the ideas of (extended) spik-
ing neural P systems and add the concept of astrocytes
influencing the signals along the axons. For the astro-
cytes themselves, we assume their membrane poten-
tial to be changed according to external inputs which
may either come from neural cells or the firing inten-
sity and frequency along the axon. We shall assume
two thresholds; then in the excitatory case, the effect
of the astrocyte on the axon it controls is as follows:

If the membrane potential is below the first
threshold, then there is no effect of the membrane
potential of the astrocyte on the controlled axon. If
the membrane potential is between the lower and the
upper threshold, then the signals along the controlled
axon are affected in an excitatory (amplifying) way.
Yet if the membrane potential goes beyond the upper
threshold the effect turns to be an inhibitory one, de-
creasing the weight of the signals coming along the
axon. In this way, the astrocyte network acts as a com-
plex control mechanism on the network of the neural
cells and is itself regulated by this network of neural
cells. Hence, these networks of neurons and astro-
cytes form a complex system. We do not model the
influence of the capillary system which is described
as a third part of such a complex interacting system of
networks as described in [20].

Our new model could be used for the representa-
tion of artificial neural networks, especially for self-
organizing feature maps; yet in contrast to analytic
models of such variants of neural networks, our model
works in a discrete manner, but on the other hand, is
based on a graph-like structure and not on a (usually
two-dimensional) grid. An example of such a two-
dimensional artificial neural network based on biolog-
ical observations of the complex networks of neurons
and astrocytes in the human neocortex can be found
in [2].

In this paper we do not focus on applications as
the possibility for modelling artificial neural networks
as self-organizing feature maps (e.g., see [9]) for spe-
cific application tasks. Instead we show the potentials
of our model to formalize discrete functions, e.g., net-
works of logical gates. Moreover, we exhibit the com-
putational completeness of our model.

2 Extended Spiking Neural P Sys-
tems with Excitatory and In-
hibitory Astrocytes

For the basic elements of formal language theory
needed in the following, we refer to any monograph in
this area, in particular, to [21]. We just list a few no-
tions and notations: V ∗ is the free monoid generated
by the alphabet V under the operation of concatena-
tion and the empty string, denoted by λ, as unit ele-
ment. N+ denotes the set of positive integers (natural
numbers), N is the set of non-negative integers, i.e.,
N = N+∪{0}. The interval of non-negative integers
between k and m is denoted by [k..m]. By REG (N)
and RE (M) we denote the sets of subsets of N that
are regular and recursively enumerable, respectively.

The basic elements of membrane comput-
ing are taken from [16]; comprehensive infor-
mation can be found on the P systems web
page http://psystems.disco.unimib.it.
Moreover, for the motivation and the biological back-
ground of spiking neural P systems we refer the reader
to [8].

An extended spiking neural P system with excita-
tory and inhibitory astrocytes (of degree m ≥ 1) (in
the following we shall simply speak of an ESNPA sys-
tem) is a construct

Π = (m, n, S, R,U)

where

• m is the number of neurons; the neurons are
uniquely identified by a number between 1 and
m (obviously, we could instead use an alphabet
with m symbols to identify the neurons);

• n is the number of astrocytes; the astrocytes are
uniquely identified by a number between m + 1
and m + n;

• S describes the initial configuration by assigning
an initial value (of spikes) to each neuron as well
as an initial value (membrane potential) to each
astrocyte;
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• R is a finite set of rules of the form(
i, E/ak → P ; d

)
such that i ∈ [1..m] (speci-

fying that this rule is assigned to cell i), E ⊆
REG (N) is the checking set (the current number
of spikes in the neuron has to be from E if this
rule shall be executed), k ∈ N is the “number of
spikes” (the energy) consumed by this rule, and
P is a (possibly empty) set of productions of the
form (l, w) where l ∈ [1..m + n] (thus specify-
ing the target neuron or astrocyte), w ∈ N is the
weight of the energy sent along the axon from
neuron i to neuron or astrocyte l;

• U is a finite set of rules of the form
(r, p, q, h, h′, f, f ′, f ′′) such that r ∈ [m + 1..n]
and p, q ∈ [1..m] (specifying that this rule is as-
signed to astrocyte i and influencing the axon be-
tween the neurons p and q), h, h′ ∈ N, h ≤ h′ are
thresholds, and f, f ′, f ′′ are functions N → N
changing the energy w, sent along the axon from
p to q,to w′ as follows: if w < h, then w′ =
f (w), if h ≤ w ≤ h′, then w′ = f ′ (w), if
w > h′, then w′ = f ′′ (w).

A configuration of the ESNPA system is de-
scribed as follows:

• for each neuron, the actual number of spikes in
the neuron is specified;

• for each astrocyte, the actual membrane potential
of the astrocyte is specified.

A transition from one configuration to another
one now works as follows:

• for each neuron i, we first check whether we can
“activate a rule”

(
i, E/ak → P

)
, i.e., if the cur-

rent value of spikes in neuron i is in E; waiting
to be executed; then neuron i “spikes”, i.e., for
every production (l, w) occurring in the set P we
put the corresponding package (l, w) on the axon
from neuron i to neuron l or astrocyte l, respec-
tively;

• if there is a rule (r, i, l, h, h′, f, f ′, f ′′) ∈ U , the
energy w in a package (l, w) on the axon from
neuron i to neuron l is modified according to this
rule to (l, w′) as described above;

• for each neuron l, we now consider all eventually
modified packages (l, w′) on axons leading to
neuron l; we then sum up all weights w′ in such
packages and add this sum to the corresponding
number of spikes in neuron l;

• for each astrocyte l, we now consider all pack-
ages (l, w) on axons leading to astrocyte l; we
then sum up all weights w in such packages and
take this sum as the new membrane potential for
astrocyte l (i.e., we forget the previous potential).

After having executed all the substeps described
above in the correct sequence, we obtain the descrip-
tion of the new configuration. A computation is a se-
quence of configurations starting with the initial con-
figuration given by S.

An ESNPA system can be used to generate sets
of numbers from RE (N) as follows: A computation
is called successful if it halts, i.e., if for no neuron, a
rule can be activated. We then consider the contents,
i.e., the number of spikes, of a specific neuron called
output neuron in halting computations. According to
[8], we can also take the distance between the first
two spikes in an output neuron to define the number
it computes. For generating k-dimensional vectors of
non-negative integers, we have to designate k neurons
as output neurons.

In the following, we shall use ESNPA systems
to compute discrete functions, especially we shall ex-
hibit how Boolean functions can be computed by us-
ing NAND-gates. When computing functions, we as-
sume external input signals arriving in some desig-
nated input neurons as well as several output neurons
for sending out the computed function with a spike in-
dicating the signal 1 and with no spike being sent out
indicating the signal 0.

The rules
(
i, E/ak → P

)
in the examples given

in the succeeding section will be of a very special
form, i.e., we always have E =

{
ak

}
, hence, we can

omit E. Moreover, the productions (l, w) in P have
the same weights for all l occurring in P , and even
the sets P are the same for all rules

(
i, E/ak → P

)
for each i; hence, we can indicate such rules as in Fig-
ure 1 where the rule ak → al in neuron p means that k
spikes are consumed in neuron p and l spikes are sent
to every neuron q if there exists an axon from p to q.
Moreover, am in neuron p indicates the initial value of
m spikes in this neuron.

&%
'$

am

ak → al

p

-

&%
'$

q

Figure 1: Representation of simple rules in neurons.

The specific effect of very special astrocytes is de-
picted in Figures 2 and 3: in Figure 2, the influence of
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an excitatory astrocyte r on an axon between two neu-
rons p and q is depicted: ≥ k|f in astrocyte r means
that if x ≥ k spikes are sent out from neuron p then
f (x) spikes will reach neuron q, whereas for a num-
ber of spikes x < k no spike will reach q. On the
other hand, in Figure 2, the influence of an inhibitory
astrocyte r on an axon between two neurons p and q
is depicted: ≤ k|f in astrocyte r means that if x ≤ k
spikes are sent out from neuron p then f (x) spikes
will reach neuron q, whereas for a number of spikes
x > k no spike will reach q.
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Figure 2: Excitatory astrocyte.
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Figure 3: Inhibitory astrocyte.

3 Computing with ESNPA Systems

In this section we first exhibit that ESNPA systems
working as generators are computationally complete,
i.e., able to generate any recursively enumerable set of
non-negative integers. Then we show how networks
of logical gates can be simulated by using specific ES-
NPA systems; in fact we describe an ESNPA system
representing a NAND-gate. Finally we describe an
ESNPA system representing a discrete amplifier.

3.1 Computational Completeness

As already the original model of spiking neural P sys-
tems was shown to be computationally complete, i.e.,
able to generate any recursively enumerable set of
non-negative integers, with only those features also
allowed in the sub-network of neurons in ESNPA
systems, we immediately obtain computational com-
pleteness for ESNPA systems, too, because just omit-
ting astrocytes gives a sufficiently powerful submodel
of spiking neural P system as defined in [8]. The
additional use of astrocytes would allow for some-
how more efficient constructions, yet these theoretical
technical details go beyond the scope of this paper and
therefore are omitted.

3.2 Networks of Logical Gates
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Figure 4: AND-gate.
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Figure 5: NAND-gate.

As is well known, any Boolean function can be
obtained by networks only consisting of NAND-gates
(and units representing the identity function). The
identity function obviously can be obtained by using

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007      323



the same inputs (i.e., A = B) in an AND-gate as de-
picted in Figure 4.

The AND-gate is shown in Figure 4: A,B are the
inputs, C is the output; the neuron p is a source send-
ing out one spike in each time step which only reaches
neuron q if the axon is excited by the astrocyte which
reaches the excitatory threshold 2 if and only if both
inputs A and B are 1. The notion ≥ 2|1 in astrocyte r
means that only if the sum of input spikes (A and B)
is ≥ 2, then one (1) spike is sent to neuron q, whereas
if less than two input spikes arrive in astrocyte r, then
no spike will reach the output neuron q. If both inputs
(A and B) represent the same signal, i.e., if A = B,
then neuron q will get a spike if and only if A = 1.

The NAND-gate is shown in Figure 5: again A,B
are the inputs, C is the output; the neuron p is a source
sending out one spike in each time step which only
reaches neuron q if the axon is not inhibited by the
astrocyte which reaches the inhibitory threshold 2 if
and only if both inputs A and B are 1.

Any network of NAND-gates and AND-gates
(only needed as identities keeping a signal as it is for
one time step) of depth n yields the result of the com-
putation with a delay of n, i.e., given the input at time
t, the corresponding output appears at time t + n.

3.3 A Discrete Amplifier
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Figure 6: An ESNPA amplifier.

The ESNPA system depicted in Figure 6 repre-
sents a discrete amplifier which, as soon as the input
from B goes beyond the given threshold k, from the
input x given at E computes the function f (x) = nx
at C. We have to remark that the rules am → am

given in the neurons p and q represent the (theoreti-
cally infinite) set of rules {{a}∗ /am → am | m ∈ N}
(for practical applications, an upper bound can be as-
sumed).

4 Conclusion

The model we discussed in this paper is already very
powerful from a theoretical point of view as elabo-
rated in the preceding section. On the other hand, for
specific applications, especially in the area of artificial
neural networks and self-organizing feature maps, an
extended version where we allow the dynamic evolu-
tion of new connections between neurons, could be
useful; the influence of the already existing astrocytes
on these new axons plays an important role.

Another variant to be considered in the future are
networks where part of the network may be destroyed
which also has an interesting biological background.
In this case, the ability of such a complex network to
reorganize itself is the most challenging aspect of this
variant.

Other variants may allow one astrocyte to influ-
ence more than one axon, eventually even in a dif-
ferent way and on the other hand, one axon may be
influenced by several astrocytes, again eventually in a
different way (in an inhibitory or excitatory way). For
example, in this way more complex functions can be
described by a single “unit” (circuit).
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