
ALGORITHM OF ACTIVE RULES ELIMINATION FOR
APPLICATION OF EVOLUTION RULES

JORGE A. TEJEDOR
Universidad Politécnica de Madrid

Natural Computing Group
Crta. de Valencia km. 7 Madrid 28031

SPAIN
jtejedor@eui.upm.es

FERNANDO ARROYO
Universidad Politécnica de Madrid

Natural Computing Group
Crta. de Valencia km. 7 Madrid 28031

SPAIN
farroyo@eui.upm.es

LUIS FERNÁNDEZ
Universidad Politécnica de Madrid

Natural Computing Group
Crta. de Valencia km. 7 Madrid 28031

SPAIN
setillo@eui.upm.es

ABRAHAM GUTIÉRREZ
Universidad Politécnica de Madrid

Natural Computing Group
Crta. de Valencia km. 7 Madrid 28031

SPAIN
abraham@eui.upm.es

Abstract: This paper presents a new evolution rules application algorithm to a multiset of objects to use in the P
system implementation in digital devices. In each step of this algorithm two main actions are carried out eliminat-
ing, at least, an evolution rule to the set of active rules. Therefore, the number of operations executed is limited and
it can be known a priori which is its execution time at worst. This is very important as it allows for determination
of the number of membranes to be located in each processor in the distributed implementation architectures of P
systems to obtain optimal times with minimal resources. Although the algorithm is sequential, it reaches a certain
degree of parallelism due to a rule that can be applied several times in a single step. In addition to this, this algo-
rithm has shown in the experimental tests that the execution times is better than the ones previously published.

Key–Words: Natural Computing, Transition P System, Evolution Rules Application, Algorithm

1 Introduction
Computation with membranes was introduced by
Gheorghe Păun in 1998 [?] through a definition
of transition P systems. This new computational
paradigm is based on the observation of biochemi-
cal processes. The region defined by a membrane
contains chemical elements (multisets) which are sub-
ject to chemical reactions (evolution rules) to produce
other elements. Transition P systems are hierarchi-
cal, as the region defined by a membrane may contain
other membranes. Multisets generated by evolution
rules can be moved towards adjacent membranes (par-
ent and children). This multiset transfer feeds back
into the system so that new products are consumed by
further chemical reactions in the membranes.

These systems perform computations through
transition between two consecutive configurations.
Each transition or evolution step goes through two se-
quential steps: application of rules and communica-
tion. First, the evolution rules are applied simultane-
ously to the multiset in each membrane. This pro-
cess is performed by all membranes at the same time.

Then, also simultaneously, all membranes communi-
cate with their destinations, the multisets generated.

The objective of this paper is to present a new
sequential algorithm for rules application to a multi-
set to obtain a certain degree of parallelism. This al-
gorithm improves upon those published previously in
two ways: it is faster and it allows for prior determi-
nation of the time needed to execute it.

The paper is structured as follows: first, related
works are presented; then, the problem is discussed
formally; next, the algorithm is presented, its accuracy
shown and its complexity calculated. Finally, experi-
mental data is presented, followed by the conclusions.

2 Related works

At present, three distinct lines of P system implemen-
tation are being followed in electronic devices (Per-
sonal Computers [?], microcontrollers [?] and hard-
ware chips [?]). None of these has managed to achieve
broadly parallel execution, either in applying evolu-
tion rules or in communication. Implementation with

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 259

Personal Conmputers and microcontrollers face the
problem that these devices are sequential by nature.
Implementation in Hardware is the closest to maxi-
mal parallelism, although it has not yet achieved it.
Moreover, it is not easily scalable.

In literature on P systems, we find that Ciobanu
[?] proposes an architecture in which rules applica-
tion achieves a certain level of parallelism while com-
munications are sequential. Ciobanu himself has ac-
knowledged that the problem of this architecture lies
in network congestion: “There are, however, execu-
tions that could take a rather a long time due to unex-
pected network congestion”.

The SW architecture for P Systems implemen-
tation proposed in [?] eradicates network congestion
and obtains an evolution step time proportional to the
square root of the number of membranes. This solu-
tion requires renouncing the maximal parallelism in
favor of achieving a degree of parallelism that would
be dependent on both the speed of communications
and the quicker application of evolution rules. Thus,
quicker algorithms must be developed to adapt to both
sequential and parallel technologies.

Moreover, architecture [?] must know, a priori,
the execution time of evolution rules application al-
gorithm in order to make a balanced distribution of
membranes in system processors. This information
cannot be obtained with algorithms published to date
[?][?][?] because their computational cost depends on
the multiset cardinals to which evolution rules are ap-
plied.

3 Formal definitions related to rules
application in a P system

Firstly, this section formally defines the concepts of
multisets of objects, evolution rules, multisets of evo-
lution rules, applicability benchmarks (maximal and
minimal) of a rule to a multiset of objects. Sec-
ondly, on the basis of these definitions, requirements
are specified for an application algorithm of rule evo-
lution.

3.1 Multisets of Objects
Definition 1 Multiset of object. Let a finite and not
empty set of objects be O and the set of natural num-
bers N, is defined as a multiset of object m as a map-
ping:

m : O → N
o→ n

Possible notations for a multiset of objects are:

m = {(o1, n1) , (o2, n2) , ..., (om, nm)}
m = on1

1 · o
n2
2 · ... · o

nm
m

Definition 2 Set of multisets of object over a set of
objects. Let a finite set of objects be O, the set of all
the multisets that can be formed over set O is defined
as:

M (O) = {m : O → N | m is a Multiset over O}

Definition 3 Multiplicity of object in a multiset of ob-
jects. Let an object be o ∈ O and a multiset of objects
m ∈ M (O), the multiplicity of an object is defined
over a multiset of object such as:

| |o : O ×M (O)→ N
(o,m)→ |m|o = n | (o, n) ∈ m

Definition 4 Weight or Cardinal of a multiset of ob-
jects. Let a multiset of objects be m ∈ M (O), the
weight or cardinal of a multiset of objects is defined
as:

| | : M (O)→ N

m→ |m| =
∑
∀o∈O

|m|o

Definition 5 Multiset support. Let a multiset of ob-
jects be m ∈M (O) and P (O) the part set of O, the
support for this multiset is defined as:

Supp : M (O)→ P (O)
m→ Supp (m) = {o ∈ O | |m|o > 0}

Definition 6 Empty multiset. This is the multiset rep-
resented by ∅M(O) and which satisfies:

∅M(O) ⇔ |m| = 0⇔ Supp (m) = ∅

Definition 7 Inclusion of multisets of objects. Let two
multisets of objects be m1,m2 ∈ M (O), the inclu-
sion of multisets of objects is defined as:

m1 ⊂ m2 ⇔ |m1|o ≤ |m2|o ∀o ∈ O

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 260

Definition 8 Sum of multisets of objects. Let two mul-
tisets of objects be m1,m2 ∈M (O), the sum of mul-
tisets of objects is defined as:

+ : M (O)×M (O)→M (O)
(m1,m2)→ {(o, |m1|o + |m2|o) ∀o ∈ O}

Definition 9 Subtraction of multisets of objects. Let
two multisets of objects be m1,m2 ∈ M (O) and
m2 ⊂ m1, the subtraction of the multisets of objects
is defined as:

− : M (O)×M (O)→M (O)
(m1,m2)→ {(o, |m1|o − |m2|o) ∀o ∈ O}

Definition 10 Intersection of multisets of objects. Let
two multisets of objects be m1,m2 ∈ M (O), the in-
tersection of multisets of objects is defined as:

⋂
: M (O)×M (O)→M (O)

(m1,m2)→ {(o,min (|m1|o, |m2|o)) ∀o ∈ O}

Definition 11 Scalar product of multiset of objects by
a natural number. Let a multiset be m ∈ M (O) and
a natural number n ∈ N, the scalar product is defined
as:

· : M (O)× N→M (O)
(m, n)→ m · n = {(o, |m|o · n) ∀o ∈ O}

3.2 Evolution Rules

Definition 12 Evolution rule over a set of objects
with target in T and with no dissolution capacity. Let
a set of objects be O, a ∈ M (O) a multiset over O,
T = {here, out}

⋃
{inj/1 ≤ j ≤ p} a set of targets

and c ∈M (O × T) a multiset over O× T , an evolu-
tion rule is defined like tuple:

r = (a, c)

Definition 13 Set of evolution rules over set of ob-
jects and targets in T . This set is defined as:

R (O, T) = {r | r is a rule over O and T}

Definition 14 Antecedent of Evolution Rule. Let an
evolution rule be r ∈ R (O, T), the antecedent of an
evolution rule is defined over a set of objects as:

input : R (O, T)→M (O)
(a, c)→ input (r) = a | r = (a, c) ∈ R (O, T)

Definition 15 Evolution rule applicable over a multi-
set of Objects. Let an evolution rule be r ∈ R (O, T)
and a multiset of objects m ∈ M (O), it is said that
an evolution rule is applicable over a multiset if and
only if:

∆r (m)⇔ input (r) ⊂ m

Definition 16 Set of evolution rules applicable to a
multiset of objects. Let a set of evolution rules be R ∈
P (R (O, T)) and a multiset of objects m ∈ M (O),
the set of evolution rules applicable to a multiset is
defined as:

∆∗ : P (R (O, T))×M (O)→ P (R (O, T))
(R,m)→ ∆∗

R (m) = {r ∈ R | ∆r (m) = true}

Property 1 Maximal applicability benchmark of evo-
lution rule over a multiset of objects. Let an evolu-
tion rule be r ∈ R (O, T) and a multiset of objects
m ∈M (O), the maximal applicability benchmark of
a rule in a multiset is defined as:

∆ d e : R (O, T)×M (O)→ N

(r, m)→ ∆rdme = min
{

|m|o
|input(r)|o

∀o ∈ Supp(m) ∧ |input(r)|o 6= 0
}

Property 2 Minimal applicability benchmark of evo-
lution rule over a multiset of objects and set of evo-
lution rules. Let an evolution rule be r ∈ R (O, T),
a multiset of objects m ∈ M (O) and a set of evolu-
tion rules R ∈ P (R (O, T)), the minimal applicabil-
ity benchmark is defined as the function:

∆b c : R (O, T)×M (O)× P(R(O, T))→ N

(r, m,R)→ ∆rbmc = ∆r

⌈
m−m

⋂ ∑
∀ri∈R−{r}

input(ri) ·∆ri dme

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 261

Property 3 An evolution rule r ∈ R (O, T) is
applicable to a multiset of objects m ∈ M (O) if
and only if the maximal applicability benchmark is
greater than or equal to 1.

∆r (m)⇔ ∆r dme ≥ 1

Property 4 The maximal applicability level of a rule
r ∈ R (O, T) over an object multiset m ∈ M (O)
is greater than or equal to the maximal applicability
level of the rule in a subset of the multiset.

∆r dm1e ≥ ∆r dm2e ∀m1,m2 ∈M (O) | m2 ⊂ m1

Property 5 If the maximal applicability benchmark
of a rule r ∈ R (O, T) over a multiset of objects m ∈
M (O) is 0, then the maximal applicability benchmark
of the rule r over the sum of input (r) and m is
equal to the maximal applicability benchmark of the
input (r) equal to 1.

∆r dme = 0⇒
∆r dinput (r) + me = ∆r dinput (r)e = 1

3.3 Multisets of Evolution Rules

Definition 17 Multiset of evolution rules. Let a finite
and not empty set of evolution rules be R (O, T) and
the set of natural numbers N, a multiset of evolution
rules is defined as the mapping:

MR(O,T) : R (O, T)→ N
r → n

All definitions related to multisets of objects can be
extended to multisets of rules.

Definition 18 Linearization of evolution multiset of
rules. Let a multiset of evolution rules be mR =
rk1
1 · r

k2
2 · ... · r

kq
q ∈ MR(O,T) linearization of mR

is defined as:

q∑
i=1

ri · ki ∈ R (O, T)

3.4 Requirements of Application of Evolu-
tion Rules over Multiset of objects

Application of evolution rules in each membrane of
P Systems involves subtracting objects from the mul-
tiset by using rules antecedents. Rules used are cho-
sen in a non-deterministic manner. The process ends
when no rule is applicable. In short, rules applica-
tion to a multiset of object in a membrane is a process
of information transformation with input, output and
conditions for making the transformation.

Given an object set O = {o1, o2, ..., om}
where m > 0, the input to the transformation
process is composed of a multiset ω ∈ M (O) and
R ⊂ R (O, T), where:

ω = on1
1 · on2

2 · ... · onm
m

R = {r1, r2, ..., rq} being q > 0

In fact, the transformation only needs rules
antecedents because this is the part that acts on ω. Let
these antecedents be:

input (ri) = o
ni

1
1 · o

ni
2

2 ·... ·o
ni

m
m ∀i = {1, 2, ... , q}

The output of the transformation process will be
a multiset of object ω′ ∈ M (O) together with the
multiset of evolution rules applied ωR ∈MR(O,T).

ω′ = o
n
′
1

1 · o
n
′
2

2 · ... · o
n
′
m

m

ωR = rk1
1 · r

k2
2 · ... · r

kq
q

Conditions for making the transformation are
defined according to the following requirements:

Requirement 1: The transformation process is de-
scribed through the following system of equations:

n1 = n1
1 · k1 + n2

1 · k2 + ... + nq
1 · kq + n

′
1

n2 = n1
2 · k1 + n2

2 · k2 + ... + nq
2 · kq + n

′
2

...

nm = n1
m · k1 + n2

m · k2 + ... + nq
m · kq + n

′
m

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 262

That is:

q∑
j=1

nj
i · kj + n

′
i = ni ∀i = {1, 2, ..., m}

or

q∑
i=1

input (ri) · ki + ω′ = ω

The number of equations in the system is the car-
dinal of the set O. The number of unknowns in the
system is the sum of the cardinals of the set O and the
number of rules of R. Thus, the solutions are in this
form: (

n
′
1, n

′
2, ..., n

′
m, k1, k2, ..., kq

)
∈ Nm+q

Meeting the following restrictions

0 ≤ n
′
i ≤ ni ∀i = {1, 2, ..., m}

Moreover, taking into account the maximal and
minimal applicability benchmarks of each rule, the
solution must satisfy the following system of inequa-
tions:

∆rj bωc ≤ kj ≤ ∆rj dωe ∀j = {1, 2, ..., q}

Requirement 2: No rule of the set R can be applied
over the multiset of objects ω′, that is:

∆r

(
ω′) = false ∀r ∈ R

Having established the above requirements, the
system of equations may be incompatible (no rule can
be applied) determinate compatible (there is a single
multiset of rules as the solution to the problem) or in-
determinate compatible (there are many solutions). In
the last case, the rule application algorithm must pro-
vide a solution that is randomly selected from all pos-
sible solutions in order to guarantee non-determinism
inherent to P systems.

4 Algorithm of active rule elimina-
tion

This section describes an evolution rules application
algorithm to a multiset of objects whose execution
time depends on the number of rules. The general idea
of the algorithm is to eliminate one by one the rules of
the active rule set. Each step for elimination of a rule
X requires the sequential execution of 2 actions:

1. Any rule other than X belonging to the set of
active rules is applied. The number of times it is
applied will be a random number between 0 and
its maximal applicability. In this way, each of the
active rules has a possibility of being applied.

2. The rule X is applied a number of times that is
equal to its maximal applicability benchmark. In
this way, the rule is no longer applicable and dis-
appears of the set of active rules.

To facilitate coding of the algorithm, the set of
active rules is transformed into an ordered sequence
R. Initially, the position of any rule ri in the sequence
is i. The pseudo-code of the algorithm is as follows:

(1) ω′ ← ω
(2) ωR ← ∅MR(O,T)

(3) FOR Last = | R | DOWNTO 1
(4) BEGIN
(5) FOR Ind = 1 TO Last− 1 DO
(6) BEGIN
(7) Max← ∆R[Ind] dω′e
(8) K ← random(0,Max)
(9) ωR ← ωR +

{
R [Ind]K

}
(10) ω′ ← ω′− input (R [Ind]) ·K
(11) END
(12) Max← ∆R[Last] dω′e
(13) ωR ← ωR +

{
R [Last]Max

}
(14) ω′ ← ω′ − input (R [Last]) ·Max
(15) END

Analysis of the behavior of the algorithm shows
that a significant improvement can be made. Some-
times, in the step of elimination of rule R [j],
elimination also occurs of rule R [i], where i < j.
There are two reasons for this

1. Rules applied before R [i] in the elimination step
consume the objects necessary for R [i] to no
longer be applicable.

2. The random value which defines the number of
times application is made of rule R [i] coincides
with its maximal applicability value.

If rule R [i] is eliminated in elimination step R [j],
it is no longer necessary to execute the pertinent elim-
ination step. In this way, the number of rule elimina-
tion steps is reduced, and therefore the execution time
of the algorithm. The pseudo-code of the optimized
algorithm is as follows:

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 263

(1) ω′ ← ω
(2) ωR ← ∅MR(O,T)

(3) Ind ← 1
(4) REPEAT
(5) Max← ∆R[Ind] dω′e
(6) IF Max 6= 0 THEN
(7) IF Ind = | R | THEN
(8) K ←Max
(9) ELSE
(10) K ← random(0,Max)
(11) ωR ← ωR +

{
R [Ind]K

}
(12) ω′ ← ω′ − input (R [Ind]) ·K
(13) ELSE
(14) K ← 0
(15) IF Ind = | R | THEN
(16) Remove(R, Ind)
(17) Ind← 1
(18) ELSE
(19) IF Max = K
(20) Remove(R, Ind)
(21) ELSE THEN
(22) Ind← Ind + 1
(23) UNTIL | R | = 0

This algorithm is composed of a loop which ends
when the indexed set of active rules R is empty. In
each iteration, three main actions are executed:

1. The maximal applicability benchmark is calcu-
lated for rule R [Ind] and is stored in Max.

2. If rule R [Ind] is applicable (Max 6= 0), then
it is applied K times. The value of the number
K, will either coincide with Max if the rule is
the last one in the set of active rules and it must
be eliminated, or it will be a random number be-
tween 0 and Max if it is not the last rule of R.

3. Rules are eliminated if possible and the loop in-
dex is updated. If the rule applied is the last one
in R, then it is eliminated by means of the op-
eration Remove() and the loop starts over again
at Ind = 1. Otherwise, if the rule was not ap-
plicable or is no longer applicable because it has
been applied up to its maximal applicability, it is
eliminated by means of the operation Remove()
and the index does not change. In any other case,
the index is advanced to the next rule.

The operation Remove(R,Actual) eliminates
from the sequence R the rule occupying the position
indicated by the value of Actual.

4.1 Correctness

The algorithm presented is correct because:
Lemma 1 The algorithm is finite.
Proof: The algorithm ends when the condition of loop
ending is attained (sentence 23); that is, when the se-
quence of active rules is empty. This occurs because
in each iteration, either a rule is eliminated from the
sequence by the operation Remove() (sentences 16
and 20), or the index showing the position of the rule
to be applied approaches the last element in sequence
R (sentence 22), which in subsequent iterations will
be eliminated (sentence 20).

Lemma 2 No evolution rule is applicable to ω′

Proof: The sequence R initially contains all rules ap-
plicable to ω′. To eliminate a rule from sequence R, its
maximal applicability benchmark must be zero. Ow-
ing to property 3 we know that a rule with a maximal
applicability benchmark equal to zero is not applica-
ble. Therefore, when a rule is eliminated from the se-
quence R, it is because it is not applicable. At the end
of the algorithm, the sequence R is empty, so there
can be no rule applicable to ω′.

Lemma 3 Any result generated is a possible solution
Proof: Starting with the input of the algorithm com-
posed of the multiset ω and the sequence of rules R,
construction of the solution follows these steps:

Let ki
j be the number of times the rule j is applied

in ith time the rule was applied.
Let Ri

j be the set of applicable rules when j was
the last rule applied and i times an attempt was made
to apply all active rules.

Let Ri be the set of applicable rules after all rules
have been applied a maximal of i times

For i = 1 the following must be:

k1
1 ∈ {0, ... , ∆r1 dωe}

∆r1 dωe = 0 ∨ k1
1 = ∆r1 dωe ⇒ r1 /∈ R0

1

R0
1 = ∆∗

R0(ω − k1
1 · input(r1))

For application of the following rule, R0
1 is con-

sidered.
If r2 ∈ R0

1

k1
2 ∈

{
0, ...,∆r2

⌈
ω − k1

1 · input(r1)
⌉}

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 264

∆r2 dωe = 0 ∨ k1
2 = ∆r2 dωe ⇒ r2 /∈ R0

2

R0
2 = ∆∗

R0(ω − k1
1 · input(r1)− k1

2 · input(r2))

For application of the following rule R0
2 is con-

sidered:

. . .
If rq ∈ R0

q−1

k1
q = ∆rq

ω −
q−1∑
j=1

k1
j · input(rj)

rq /∈ R0

q = R1 = ∆∗
R0(ω −

q∑
j=1

k1
j · input(rj))

If
∣∣R1

∣∣ = 0 the algorithm ends, otherwise rules
that are still applicable may be applied again.

For i = 2 it must be that:
If r1 ∈ R1

k2
1 ∈

0, ... , ∆r1

ω −
q∑

j=1

k1
j · input(rj)

∆r1 dωe = 0 ∨ k2
1 = ∆r1 dωe ⇒ r1 /∈ R1

1

R1
1 = ∆∗

R0(ω −
q∑

j=1

k1
j · input(rj)− k2

1 · input(r1))

If r2 ∈ R1
1

k2
2 ∈

{
0, ... , ∆r2

⌈
ω−

q∑
j=1

k1
j · input(rj)− k2

1 · input(r1)

⌉}

∆r2 dωe = 0 ∨ k2
2 = ∆r2 dωe ⇒ r2 /∈ R1

2

R1
2 = ∆∗

R0(ω −
q∑

j=1

k1
j · input(rj)−

k2
1 · input(r1) − k2

2 · input(r2))

In general, if the rule rj is applicable the ith time,
the following is satisfied:

ki
j ∈

{
0, ... , ∆rj

⌈
ω − (1)

i−1∑
ii=1

q−ii+1∑
jj=1

kii
jj · input(rjj) −

j−1∑
jj=1

ki
jj · input(rjj)

⌉}

Except when rj is the last rule in the sequence Ri,
in which case:

ki
j = ∆rj

⌈
ω − (2)

i−1∑
ii=1

q−ii+1∑
jj=1

kii
jj · input(rjj)−

j−1∑
jj=1

ki
jj · input(rjj

⌉

Ri
j = ∆∗

R0(ω−
i−1∑
ii=1

q−ii+1∑
jj=1

kii
jj · input(rjj)−

j∑
jj=1

ki
jj · input(rjj))

and

Ri+1 = Ri
x being x the last rule in Ri

The general expression of the rule multiset solu-
tion will be:

ωR = r
Ps1

i=1 ki
1

1 · r
Ps2

i=1 ki
2

2 · ... · r
Psq

i=1 ki
q

q

being si ∈ {1, ..., q − i + 1}

or

ωR = r
S∗

1
1 · r

S∗
2

2 · ... · r
S∗

q
q

being S∗
j =

sj∑
i=1

ki
j | sj ∈ {1, ..., q − j + 1}

Let us see if the solution meets the established
requirements:

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 265

1. The solution satisfies the system of equations∑q
j=1 input(rj) ·S∗

j ⊂ ω due to the construction
of the solution, since whenever a rule is added to
the set ωR it is known to be applicable, as seen in
the equation of the general (equation 1) term of
each ki

j , and therefore, fewer objects are always
consumed than those containing ω.

2. No rule is applicable, that is ωR is maximal.
Lemma 2 garantees this fact.

Lemma 4 Any solution possible is generated by the
algorithm
Proof: Let ωR = rk1

1 · r
k2
2 · ... · r

kq
q be a solution to the

problem.
It is known that:

q∑
i=1

input(ri) · ki + ω′ = ω

Then

∀i, , input(ri)·ki+ω′ = ω−
q∑

j=1∧j 6=i

input(rj)·kj

Applying the maximal applicability benchmark
yields:

∀i, , ∆ri

⌈
input(ri) · ki + ω′⌉ =

∆ri

ω −
q∑

j=1∧j 6=i

input(rj) · kj

As ∆r (ω′) = 0 ∀r ∈ R, owing to property 5:

∀i, , ∆ri dinput(ri) · kie =

∆ri

ω −
q∑

j=1∧j 6=i

input(rj) · kj

So multiplicities of solution rules generated by

the algorithm is characterized by:

∀i, , ki = ∆ri

ω −
q∑

j=1∧j 6=i

input(rj) · kj

Any solution to the problem is achievable in q

steps of the algorithm because, firstly, in the interval
defining the value k1

i ∀i ∈ {1, ..., q − 1} (equation 1)
we find the solution value ki and secondly, the value

assigned to k1
q (equation 2) coincides with the value

of kq.

Lemma 5 The algorithm is not determinist
Proof: This occurs when a rule is not the last one in
the set, it is applied a randomly determined number of
times (sentence 10) between 0 and its maximal appli-
cability value.

4.2 Complexity

The worst case of the optimized algorithm for rule
elimination occurs when sentence 20 is never exe-
cuted, that is, when ∀j = {1, ..., q} in the elimination
step of a rule R [j] we never eliminate another rule
R [i] where i < j. In this case, there is no improve-
ment in the behavior of the optimized algorithm and
the number of iterations the loop is repeated is:

#iterations =
q∑

i=1

i =
q · (q + 1)

2

Moreover, in the loop body, the heaviest oper-
ations are those for calculating the maximal appli-
cability benchmark (sentence 5), the scalar product
of the input of a rule by a whole number (sentence
10) and the difference of two multisets (sentence 10).
All these operations are linearly dependent on the
cardinal of the multiset support ω.

#operations per iteration ≈ 3 · | Supp(ω)|

Therefore, the number of operations of the algo-
rithm is:

#operations ≈ 3 · | Supp(ω)| · q · (q + 1)
2

So the execution time of the algorithm at worst is
linear dependent on the square of the number of rules.

The algorithm performs best when all rules are
applied once with the maximal applicability bench-
mark. In this case, the number of times the loop is
executed is q, and thus the execution time of the algo-
rithm is linear dependent on the number of rules.

5 Comparison tests

The experimental tests have compared the ”Active
Rules Elimination” algorithm with the fastest se-
quencial algorithm that is ”Maximal Applicability
Benchmark”[?]. The experimental trial game used to
test both algorithms has taken into account 3 parame-
ters:

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 266

1. Number of objects of the multiset is 16

2. Number of rules with a value belonging to the set
{1, 2, 4, 8, 16, 32, 64, 128, 256, 512}

3. Relationship between the cardinal of the multi-
set and the cardinal of the sum of inputs of
active rules with a value belonging to the set{
1, 10, 102, 103, 104, 105, 106, 107

}

Figure 1: Comparison tests

Figure ?? shows a graphic with the results ob-
tained in the tests. Each curve of the graphic rep-
resents the percentage of execution time of ”Active
Rules Elimination” algorithm with regards to the ex-
ecution time of ”Maximal Applicability benchmark”
algorithm for each of the values of the relationship of
the cardinals. In this graphic you can see that ”Active
Rules Elimination” algorithm is always better than
”Maximal Applicability benchmark” algorithm inde-
pendently of the numbers of rules and the relationship
between cardinals. However, taking into account that
the published P system have no more than 16 rules
by membrane, the execution time used by ”Active
Rules Elimination” algorithm is much smaller than the
one used by ”Maximal Applicability benchmark” al-
gorithm. For example, in the best case (1 rule in the
membrane and the relationship of the cardinals equals
to 107) the execution time ”Active Rules Elimination”
algorithm is only 5% of the ”Maximal Applicability
benchmark” algorithm.

6 Conclusions

This paper has described a new sequential algorithm
of rules application to a multiset that attains a certain
degree of parallelism, as a rule can be applied a num-
ber of times in a single step. This algorithm is the
first one where the number of operations performed
is limited, thus allowing for determination of execu-
tion time beforehand. This information is essential to
calculate the number of membranes that have to be lo-
cated in each processor in distributed implementation
architectures of P systems to achieve optimal times
with minimal resources. In experimental tests, this al-
gorithm has shown a better execution time than previ-
ously published sequential algorithms.

References:

[1] G. Ciobanu, W. Guo , P Systems Running on a
Cluster of Computers, Workshop on Membrane
Computing LNCS 2933, 2004 pp.123-139

[2] L. Fernández, F. Arroyo, J. Castellanos, J. Teje-
dor, I. Garcı́a , New Algorithms for Applica-
tion of Evolution Rules based on Applicability
Benchmarks, BioInformatics & Computational
Biology, 2006 pp. 94-100

[3] L. Fernández, F. Arroyo, J. Tejedor, J. Castel-
lanos, Massively Parallel Algorithm for Evo-
lution Rules Application in Transition P Sys-
tems, Pre-Proceedings of Workshop on Mem-
brane Computing (WMC7) Leiden, Netherlands,
2006, pp. 337-343

[4] A. Gutiérrez, L. Fernández, F. Arroyo, V.
Martı́nez, Design of a hardware architec-
ture based on microcontrollers for the imple-
mentation of membrane system, Proceedings
on 8th International Symposium on Symbolic
and Numeric Algorithms for Scientific Com-
puting (SYNASC-2006). Timisoara (Rumania)
September, 2006, pp. 39-42.

[5] V. Martı́nez, L. Fernández, F. Arroyo, A.
Gutiérrez, HW Implementation of a Bounded Al-
gorithm for Application of Rules in a Transi-
tion P-System, Proceedings on 8th International
Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC-
2006). Timisoara, Romania, 2006, pp. 32-38.

[6] Gh. Păun Membrane Computing. An Introduc-
tion, Springer-Verlag, 2002

[7] J. Tejedor, L. Fernández, F. Arroyo, G. Bravo,
An Architecture for Attacking the Bottleneck
Communication in P Systems, The Twelfth In-
ternational Symposium on Artificial Life and
Robotics, 2007, pp. 500-505

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 267

