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Abstract: The purpose of this study is to provide an integrated method which aims to analyze individualized
concept structure. This method integrates algorithm of fuzzy logic model of perception (FLMP) and
interpretive structural modeling (ISM). The combined algorithm of this integrated model could analyze the
individualized concepts structure based on the comparisons with expert. The authors provide the empirical
data analysis of equality axiom testing for pupils. The results show that task-takers with different response
patterns and total score own varied concept structures. Finally, based on the findings and results, some
suggestions and recommendations for future research are provided.

Key-Words: fuzzy logic model of perception, interpretive structural modeling, concept structure, -cut .

1 Introduction
One purpose of cognition science is to understand
the information processing and knowledge storage
[6]. Concepts are basic elements of knowledge and
they constitute attributes of knowledge [8]. Most
researcher consider that knowledge is stored in a
form of network. This kind of network reveals the
relationship and hierarchies of concepts. Hence,
analysis of concept structures is quite important for
pedagogy, e-learning or computerized cognition
diagnosis [2]. One benefit of educational
measurement is to realize the learning condition of
students. Methodologies of concept analysis are an

important issue of psychometrics and computer
science.

There are varied approaches as to methodologies
of concept structure analysis. Knowledge space is
mathematical-psychological models of knowledge
structures [1]. Its knowledge state represent
structures of learning results. Learning path reveal
relationship of concept and learning process [3].
ALEKS is the computerized assessment system
based on knowledge space.

Pathfinder is another approach of concept
analysis based on foundations of graph theory [5].
Proximity matrix of concepts is acquired. By
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similarity rating between concepts and its algorithm,
the network relationship of concepts or nodes is
clearly understood.

Rule space is an integrated method which
combines cluster analysis, S-P chart and item
response theory. Task analysis is required to
confirm the cognition attributes of items. With the
analysis of rule space, response pattern of task-
takers is explained by way of rules of problem-
solving. M. Tatsuoka and K. K. Tatsuoka applied
rule space in the cognition diagnosis of fraction
concepts [20].

Another approach of analysis is based on
traditional and modern psychometric method. The
former is classical test theory (CTT) and the latter
is item response theory (IRT). Classical test theory
aims to analyze the difficulty, and discrimination of
items and reliability of test. However, it mentions
little about the concept structure analysis. As to item
response theory, some researcher decompose the
parameters of items into cognitive operations or
cognition components [13]. Thus, they provide
advanced models in order to present the
relationship of concepts for items. For example,
linear logistic test model is an extended model of
one-parameter logistic model and difficulty of items
is the linear combination of concepts within items
[18]. It is the considerations of mixture strategies
model that unique task-taker will use only one
strategy to solve question [19]. Furthermore,
mixture strategies model owns the characteristics of
item response model and latent class model.
However, most models based on item response
theory provide little about the hierarchies of
concepts between items.

In this study, the integrated method of fuzzy
logic model of perception (FLMP) and interpretive
structural modeling (ISM) will be extended into a
combined algorithm. Viewpoints of  -cut
operation from fuzzy theory will also be used [4].
The integrated algorithm will reveal the
individualized concept structure and relationship.
The authors will analyze the empirical data of
equality axiom test.

2 Literature Review
The algorithm of fuzzy logic model of perception
and interpretive structural modeling are the
foundations of this study. The algorithm will be
discussed as follows.

2.1 Fuzzy Logic Model of Perception
Fuzzy logic model of perception is to describe

the probability with which combination of two
stimuli could fit prototypeT [12]. Suppose there is
a combination of two factor C and O . There
are I levels and J levels for
factor C and O respectively. It is expressed as

 ICCCC ,,, 21  and  JOOOO ,,, 21  . The
fuzzy truth value of iC and jO is ic and

jo respectively. Fuzzy truth value ic and jo express

the degree that the combination of iC and jO will

support prototypeT [12] [16]. It is derived from the
viewpoints of choice rule and relative goodness rule
(RGR) [14]. The probability that the combination of
 ji OC , could be viewed as prototype T can be

expressed as follows [15]
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2.2 Interpretive Structural Modeling
The theory of interpretive structural modeling (ISM)
is based upon discrete mathematics and graph
theory [9] [17]. J. N. Warfield [9] provided ISM and
it aims to arrange elements in a hierarchical relation.
For any set that contains K elements, we can make a
hierarchical graph of all elements if the binary
relationship between elements is known [21].
Namely, the relationship of iA and jA must be

acquired in advance. The relationship could be
expressed in the form of matrix  

KKijaA


 . If

1ija exists, iA is the precondition of jA . On the

other hand, if 0ija exists, iA is not the

precondition of jA . The analytical procedure of ISM

is as follows [10].
The ISM adopt Boolean operation. The

transitive closure is PAAAAA  32ˆ and
reachability matrix is PIAIAR )(ˆ  .
With transitive closure Â and reachability
matrix R , the hierarchical graph of elements in
matrix  

KKijaA


 could be plotted [9]. For

example, let the  
KKijaA


 be
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The relationship and hierarchies of elements is
depicted in Fig. 1.

Fig. 1. The linkage of elements in hierarchies

3 Method of Concept Structure
Analysis

Suppose M ( Mm ,,2,1  ) express the number of
items in a test which measures A ( Aa ,,2,1  )
concepts. Besides, there are N task-takers
( Nn ,,2,1  ) who take this test. The following
symbols should be defined before the explanation of
algorithm.
(1) The response data matrix from a test is denoted

by MNnmx  )(X . 1nmx if task-taker n gives
correct answer on item m ; otherwise 0nmx if
task-taker n gives wrong answer on item m .

(2) The item attribute matrix is denoted by
AMmay  )(Y . 1may means item m exactly

measures concept a ; otherwise 0may means
item m could not measure concept a .

(3) These A concepts construct A2 ideal concept
vectors, which are denoted by

),,,()( 211 iAiiAiai zzzz  z , Ii ,,2,1 

and AI 2 . Each ideal concept vector
expresses one certain kind of concept structure
for task-takers. 1iaz means the ideal concept
vector iz contains concept a ; otherwise 0iaz
means the ideal concept vector iz does not
contain concept a . Based on total number of
A concepts, these A2 ideal concept vectors

construct the ideal concept matrix AIiaz  )(Z .

(4) Each ideal concept vector iz could correspond
with only one ideal response vector

),,,()( 211 iMiiMimi rrrr  r , where

Ii ,,2,1  and AI 2 . Ideal response vector

ir means the response pattern on all items based
on the correspondence of ideal concept vector

iz with item attribute matrix AMmay  )(Y .
1imr means ideal response vector iz could

provide correct answer on item m ; otherwise
0imr means ideal response vector iz could

provide correct answer on item m . These total
number of I ideal response vectors constitute
the ideal response matrix MIimr  )(R .

(5) The standardized closeness of item response
vector ),,,( 21 nMnn xxx  for task-taker
n between ideal response vector

),,,( 21 iMiii rrr r is nisc . The higher the

nisc is, the more similar ),,,( 21 nMnn xxx  and
),,,( 21 iMii rrr  is. Let INnisc  )(SC expresses

the standardized closeness matrix of all N task-
takers with regard to all ideal response vectors.

Only the two matrices MNnmx  )(X and

AMmay  )(Y are known already. The following
subsections of algorithms, which are AMC, ASC
and AFISM, describe the steps to analyze
individualized concept structures.

3.1 Algorithm for Mater of Concepts (AMC)
(1)With the known item attribute matrix

AMmay  )(Y and the ideal concept matrix

AIiaz  )(Z , the ideal response matrix

MIimr  )(R is defined as follows.


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(2) The closeness between response pattern of task-
taker n and ideal response vector ir is nic . It is

Mrxc
M

m
imnmni 




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where
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(3) For task-taker n , his standardized closeness
nisc in matrix INnisc  )(SC is defined as

A1

A5

A3 A4

A2

A1

A5

A3 A4
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If K ( 1K )different nic values satisfy 1nic ,
the crisp recognition is used to calculated nisc
and



 


else
cK

sc ni
ni ,0

1,/1
(4)

If Iicni ,,2,11  , the fuzzy recognition is
used to calculated nisc and





I

i
ninini ccsc

1

(5)

No matter crisp recognition or fuzzy recognition,
the standardized closeness satisfies 10  nisc and





I

i
nisc

1

1 .

3.2 Algorithm for Subordination of Concepts
(ASC)

(1) Llet ))(()( ZSCD  ANnad denote the
magnitude of master for task-taker n on concept
a . It is





I

i
ianina zscd

1

))(( and 10  nad (6)

(2) According to the formula of FLMP, for task-
taker n , the probability of concept a being
precondition of concept 'a (subordination
relation probability) is
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3.3 Algorithm for Fuzzy ISM (AFISM)
(1)For any task-taker n , his fuzzy relation matrix

got from the above ASC algorithm is AAaan pF )( ' .
-cut on fuzzy relation matrix is applied so that
the corresponding binary relation matrix is
acquired [7]. Therefore, appropriate  value
( 10  ) is selected and the binary relation
matrix 

nF is

AAaan pF  )( '
 and












'

'
' ,0

,1

aa

aa
aa p

p
p (8)

(2)The adjacent matrix for task-taker n on all
concepts is












'

'
' ,0

,1

aa

aa
aa p

p
p ， 10  (9)

(3)For binary relation matrix 
'aap of task-taker n ,

the ISM is applied so that the hierarchical graph
represent the individualized concept structures.

4 Data Resource
The test of equality axiom is designed by authors.
There are 465 sixth graders from Taiwan in this
study. The test includes 10 items and each item
contains one concept attribute. The concept attribute
within each item are depicted in Table 1. Concepts
of equality axiom are the basis of algebra learning.
All these items are dichotomous. In this study,

65. is selected in Algorithm for Fuzzy ISM
(AFISM). The authors implemented the software .

Table 1. The Concept Attributes within Each Item
Item Concept Attribute

1 List an unknown number in equation
2 List two unknown numbers in equation

3 Express the multiplicative relation between
symbol and number

4 Express the relation of multiplication
between symbol and number

5 Express the relation of division between
symbol and number

6 Equality axiom of addition
7 Equality axiom of subtraction
8 Equality axiom of multiplication
9 Equality axiom of division

10 Solve the unknown number correctly

5 Results
The correct ration of each item are depicted in Table
2. As shown in Table 2, the correct ration of items
varies a lot. It implies that concept structures may
exist.

Table 2. Correct Ratio of Items
Item Correct Ratio Item Correct Ratio

1 .809 6 .916
2 .398 7 .333
3 .785 8 .806
4 .757 9 .578
5 .370 10 .114
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Although the combined algorithm of FLMP and
ISM could provide the concept structure of each
task-taker, it is unfeasible to display the concept
structure of all task-takers here. Thus, the following
two subsections will display concept structures by
giving example of concept structures from several
task-takers.

In the first subsection 5.1., we will provide two
task-takers of different total score so that we could
realize the characteristics of concept structures. In
the second subsection 5.2., we will provide one pair
of task-takers who have the same total score but
with different response pattern. It is predicted that
task-takers have the same total score with different
response pattern will reveal varied concept structure.

5.1 Concept Structure of Different Total
Score
Two task-takers with different total score are

randomly selected. In Fig. 2 and Fig. 3, the symbol
of each concept and magnitude of master on
concept nad is shown. These two task-takers have
total score of 2, 8 respectively. They own different
concept structure.

Fig. 2. The Concept Structure of Student ID 307
(Total Score= 2)

Fig. 3. The Concept Structure of Student ID 416
(Total Score= 8)

5.2 Concept Structure of Same Total Score
with Different Response Pattern

As shown in Table 3, one pair of students with the
same total score are randomly selected. Both
students have total score of 4 with different
response pattern.

Table 3. Two Pairs of Students with Response
Pattern and Total Score

student ID response pattern total score
120 0011010100 4
421 0000110110 4

As shown in Fig. 4 and Fig. 5, these two
students have varied concept structures. This
phenomenon supports viewpoint of cognition
psychology and psychometrics that response pattern
could distinguish characteristics of concept structure,
but not total score.

Fig. 4. The Concept Structure of Student ID 120

Fig. 5. The Concept Structure of Student ID 421

6 Conclusions
An integrated method of FLMP and ISM for
analyzing individualized concept structure is
provided in this study. With this integrated
algorithm, the graphs of concept structures will
display the characteristics knowledge structure.
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The authors also implement the software and
apply the integrated algorithm in the empirical data
of equality axiom test from pupils. It shows that
students with different total score own varied
concept structure. Moreover, students have the same
total score with different response pattern display
distinct concept structure. This consequence
corresponds with foundation of cognition diagnosis
in psychometrics [11]. To sum up, this integrated
algorithm could improve the assessment
methodology of cognition diagnosis.
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