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Abstract: - In this paper, we propose a probability-based approach to retrieve the most probable 

solution in a temporal Interval Algebra (IA) network. In our approach, all probable solutions are 

abstracted as a Markov Chain. Based on this Markov Chain, we utilize Chapman-Kolmogorov 

functional equation to compute the most probable solution. Furthermore, in order to achieve easy and 

friendly operations for IA network’s researchers, we attempt to adopt constraint logic programming 

to implement software which is able to support temporal an IA network. The implementation of the 

software is based on finite domain non-binary CSPs. In addition, we briefly provide an application of 

retrieving the most probable solution to show the functions of software. Through experiments, we 

conclude that the implementation can satisfy the desired goal. 
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1. Introduction 

An IA (interval algebra) network is a graph where 

each node represents an interval. Directed edges in 

the network are labeled with subsets of I. By 

convention, edges labeled with I are not shown. An 

IA network is consistent (or satisfiable) if each 

interval in the network can be mapped to a real 

interval such that all the constraints on the edges 

hold (i.e., one disjunct on each edge is true) [6],[7]. 

The implementations mentioned above are non-

trivial. The user must be an expert in the 

implementation language and software. The average 

user is not capable of making even simple 

extensions or modifications. We present an 

implementation which is probably not as efficient as 

the ones previously mentioned. Our goal is user 

friendliness and ease of use. The user draws an IA 

network, and then clicks a button for a solution. The 

target audience is researchers that need to quickly 

verify or generate a few solutions, and students 

entering the temporal area.  

2. Markov Chain in Glance[8] 

A Markov chain is a series of states of a system that 

has the Markov property. At each time the system 

may have changed from the state it was in the 

moment before, or it may have stayed in the same 

state. The changes of state are called transitions. If a 

sequence of states has the Markov property, it means 

that every future state is conditionally independent of 

every prior state given the current state. 

Markov Chain can be modeled as a sequence of 

random variables X1, X2, X3, … with the Markov 

property, namely that, given the present state, the 

future and past states are independent. i.e.,  
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3. IA Networks & Binary CSPs  

We adopt Tsang’s [3] binary CSP definition. A 

binary CSP of n variables x1, …, xn has a domain Di 

of possible values associated with each variable xi. 

Each Di is finite, and it may not necessarily be the 

case that all the domains are equal. A binary 

constraint, Rij, between variables xi and xj is a subset 

of the Cartesian product of their domains. Each Rij is 

finite. We also require that (a,b) ∈ Rij if and only if 

(b,a) ∈ Rji. An IA network is a binary CSP with 

infinite domains. The intervals are the variables. The 

domain of each variable is the set of pairs of reals of 

the form (x,y) where x < y. The constraint between 

two variables i and j is the label on the edge (i,j) in 

the IA network. During the past two decades, 

research on IA networks and finite domain CSPs has 

progressed relatively independently. The reason is 

that algorithms specifically designed for finite 

domains are usually not applicable to infinite 

domains. It was not widely known that IA networks 

are indeed finite domain CSPs. For example, van 

Beek and Manchak [5] write that “two of their 

heuristics cannot be applied in our context as the 

heuristics assume a constraint satisfaction problem 

with finite domains, whereas IA networks are 

examples of constraint satisfaction problems with 

infinite domains”.  

Recently, Thornton et al. [2] show how to convert 

an IA network into an equivalent non-binary CSP 

with finite integer domains. They observe that the 

relative positions of the interval endpoints in an IA 

network can be used to determine consistency. For 

example, X = (10,15) and Y = (100.5,110) is a 

solution to X{b}Y. This solution imposes the 

ordering X- < X+ < Y- < Y+ on the endpoints where 

X= (X-,X+) and similarly for Y. A simpler solution 

is to number the endpoints from left to right which 

results in X = (1,2) and Y= (3,4).  

An IA network with two intervals is consistent if 

and only if each interval can be mapped to a pair of 

integers (a, b) where a < b, and a, b∈{1,2,3,4} such 

that the constraint on the edge holds. Note that it 

might be the case that endpoints from different 

intervals get mapped to the same integer (e.g., as in 

the case of X {=}Y). Thornton et al. [2] generalize 

the integer mapping to:  

Theorem: Each interval in an IA network with n 

intervals can be mapped to a real interval such that 

all the constraints on the edges hold if and only if 

each interval in the IA network can be mapped to an 

interval with integer end-points in the range 1…2n 

such that all the constraints on the edges hold.  

Based on theorem, Thornton et al. [2] convert an IA 

network to a non-binary CSP with finite domains. 

Each endpoint becomes a variable with domain 

{1,…,2n}. A label on an edge from X to Y in the IA 

network imposes a constraint on some or all of the 

variables X-, X+, Y-, and Y+. For example, X {d} Y 

generates the constraint (Y- < X-) & (X+ < Y+) 

which is non-binary since the constraint involves 4 

variables. They then apply local search techniques 

on the non-binary CSP.  

We use the finite domain transformation described 

above. But instead of local search, we use Eclipse 

and constraint logic programming techniques to 

solve the IA network. 

4. Architecture and Implementation 

An overview of our implementation’s components is 

given in figure 1 (copied from Paper [4]). The user 

interacts with the implementation via the graphical 

user interface (GUI). The GUI, built using jGraph 

(http://www.jgraph.com/), has 2 windows. The user 

enters a graph in the top window. There are buttons 

for drawing nodes and edges. The nodes represent 

intervals and are each numbered 1, 2, etc. Allen’s 

interval relationships are entered on the edges 

separated by commas. There are no restrictions on 

the size or shape of the graph. When the user clicks 

on the button to request a solution, the solution is 

drawn in the GUI’s bottom window. The graph is re-

drawn as entered by the user. Each edge will be 

assigned a unique label. The entire graph is 

consistent. If not consistent, a warning message is 

displayed instead.  

 

 
Fig. 1. Implementation 

 

Example: 3-colour problem 

 

Assume we have the binary CSP shown in figure 2 

where the domain for each variable is {r,g,b} and 

the constraint on each edge is {(r,g), (r,b), (g,r), 

GUI 

Java Program 

CLP Template 

CLP Code Eclipse 
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(g,b), (b,r), (b,g)} (i.e., no adjacent nodes are 

assigned the same color). 

 
Fig. 2. CSP 

 
Fig.3. IA network solution 

 

To construct P2, we associate 1 with r, 2 with g, and 

3 with b. In P2, each node has domain {1,2,3} and 

the constraint on each edge is {(1,2), (1,3), (2,1), 

(2,3), (3,1), (3,2)}. We have |U|=3, n=3, and n(2n-

1)=15. To convert P2 to a reduced-integer-CSP, case 

1 applies. In the reduced-integer-CSP, each domain 

is {1,…,15}, and the constraints are the same as P2.  

The ordered domain for each variable in the 

reduced-interval-CSP is {(1,2), (1,3), (1,4), (1,5), 

(1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6), 

(4,5),(4,6),(5,6)} and each constraint is 

{((1,2),(1,3)),((1,2),(1,4)), ((1,3),(1,2)), ((1,3),(1,4)), 

((1,4),(1,2)), ((1,4),(1,3))}. 

The IA network has the same variable domains as 

the reduced-interval-CSP, and each constraint is 

{s,si}. A solution is shown in figure 3. Note that IA 

network consistency solvers typically return a 

solution that involves a single label (i.e., one of 

b,bi,m,mi,o,oi,d,di,s,si,f,fi,=) associated with each 

edge in the network. They do not return integer 

endpoint or real interval instantiations for the 

intervals (nodes).  

The standard conversion of the constraint label {s} 

in figure 3 into a reduced-interval-CSP label would 

include tuples such as ((3,4),(3,6)). This tuple is not 

allowed in the original reduced-interval-CSP and 

therefore should not be included in the conversion. 

The permitted constraint tuples in the reduced-

interval-CSP corresponding to the labels in figure 9 

are shown in figure 4. Note that the number of 

tuples in each constraint has been reduced by half. 

 
Fig. 4. Reduced-interval-CSP partial solution 

 
Fig. 5. Reduced-interval-CSP solution 

 

Although each constraint tuple in the resulting 

reduced-interval-CSP solution is locally consistent, 

not every constraint tuple in figure 4 is part of a 

globally consistent solution. Binary CSP algorithms 

can be applied to figure 4 to generate a solution as 

shown in figure 5. The corresponding reduced-

integer-CSP and P2 solutions are shown in figure 

62. The final solution is shown in figure 7. 

 

 
Fig. 6. Final solution 

{s} {s} 

{si} 

{((1,3),(1,2)), ((1,4),(1,2)), ((1,4),(1,3))} 

{((1,2),(1,3)), ((1,2),(1,4)), ((1,3),(1,4))} 

{((1,2),(1,3)), ((1,2),(1,4)), ((1,3),(1,4))} 

{((1,3),(1,4))} 

{(1,2)} {(1,4)} 

{(1,3)} 

{((1,4),(1,2))} 

{((1,2),(1,3))} 

{1} {(3,1)} {3} 

{(2,3)

}
{(1,2)} 

{2} 
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Fig.7. Reduced-integer-CSP and P2 solution 

 

5. Execution Flow 

After the user has entered a graph and requested a 

solution, control is given to the Java program in 

figure 1. The program first reads in a constraint 

logic program template. The template is updated 

with information from the particular graph to solve. 

The completed logic program is then passed on to 

Eclipse. Eclipse will solve the graph and then pass 

the solution to the Java program. The java program 

will then display the solution in the GUI.  

The CLP template file contains constraint code 

for Allen’s relations [1]. The relations are 

implemented by placing restrictions on the 

endpoints. For example, interval (XL,XR) is before 

(YL,YR) if and only if XR < YL. In Eclipse, we 

write: b(XL,XR,YL,YR,1) :- XR < YL. The “1” in 

the last parameter of b is a numeric representation of 

b and is used to keep track of the relationships on 

the edges. The relations are numbered from 1 to 13. 

The after relationship bi is implemented in terms of 

before: bi(XL,XR,YL,YR,2) :- b(YL,YR,XL,XR,1). 

The other relations are similarly implemented. The 

CLP template file also contains clauses to enforce 

that the left endpoint of each interval precedes its 

right endpoint. 

The Java program copies the contents of the CLP 

template file to the CLP code file. Graph specific 

code is then added to the file. Assume we are given 

an IA network with n intervals (nodes) numbered 

from 1 to n. The left and right endpoints of the i’th 

interval are labeled Li and Ri respectively. The set 

of endpoints is represented in Eclipse as: EndPoints 

= [L1,R1, L2,R2,…,Ln,Rn]. For example, if n=4 we 

have: EndPoints = [ L1,R1, L2,R2, L3,R3, L4,R4 ]. 

The range of each interval endpoint must be 

explicitly specified and is between 1 and 2n. In 

Eclipse, this is written in the following format: 

EndPoints :: 1..2n. For example, if n=4 we write: 

EndPoints :: 1..8. 

The edges are also numbered. For example, if 

there are 5 edges: Edges = [E1, E2, E3, E4, E5]. 

Every edge constraint is a disjunction of 

relationships. We represent the disjunction directly. 

For example, let the constraint on edge E1 between 

intervals 1 and 2 be meets or overlaps (i.e., {m,o}). 

This constraint is represented in Eclipse as: ( 

m(L1,R1, L2,Y2,E1); o(L1,R1, L2,Y2,E1) ). 

Singleton labels are represented directly. For 

example if instead we have {m} we write: m(L1,R1, 

L2,Y2,E1). 

The problem’s constraints have now all been 

specified and we request Eclipse to generate a 

solution with the query: finda_solution(Edges). If a 

solution is found, Edges will be bound to a list of 

integers. Each integer represents an Allen relation 

for an edge. 

6. Most Probable Solution 

Figure 8 is a screenshot of the GUI. The top 

window contains the IA network entered by the 

user. The solution is shown in the bottom window. 

The CLP code file generated for this example is in 

paper [4]. Note that it is typical that only 1 page of 

Eclipse code is generated to solve the IA network. 

 
 

Fig. 8. The screenshot of the GUI 
 

Consider the simple IA network in figure 4. 

Assume we are only interested in solutions that 

assign a single label to the edges. For example, we 

don’t care about the temporal relationship between 

the two bottom nodes. Every label can appear in a 

solution for a total of 8 solutions. The 

straightforward approach for finding all these 

solutions is to first find one solution, and then 

{(r,g)} 

{r} {b} {(b,r)} 

{(g,b)} 

{g} 
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backtrack to find the others. But, we must be careful 

what we backtrack over: 

Labels: Traditional IA network software assumes 

that each pair of nodes has an edge between them. If 

an edge is not explicitly shown, it is assumed to 

have a label of I. If we backtrack over the labels in 

the network, we must consider 17,576 possible 

solutions. Notice the combinatorial explosion with a 

network of only 4 nodes!  

Endpoints: If instead, we use software based on 

Thornton et al’s approach [4], we have a network of 

4 nodes and must find an assignment of each 

interval’s endpoints to an integer in the range from 1 

to 8. Assume we have the label “b” between two 

nodes X and Y. There are 70 different ways that the 

endpoints of X and Y can be assigned to integers in 

the range from 1 to 8 so that X {b} Y holds. For 

example, one assignment is X = (1,2) and Y = (5,8). 

For meets, there are 56 different assignments for the 

endpoints.  

Note that in the above, the worst case number of 

possibilities to backtrack over is given. Clever 

algorithms and heuristics can reduce the number of 

possibilities.  

Another approach is to backtrack over the 

candidate solutions. We first generate a candidate 

solution which has one label on each edge. We 

check if this is a solution. We then generate the next 

candidate solution and so on. This is the approach 

we adopt and experiment with in this paper.  

The code for finding a single solution was left 

untouched. We added code to the “CLP Code” file 

which first generated all the possible solutions. We 

then apply the original code for finding a single 

solution to each possible solution to verify if indeed 

it is a solution. The set of valid solutions are passed 

back to the “Java Program”. The program stores the 

solutions in a two dimensional array and displays 

the solutions in the GUI one at a time.  

Let us now add probabilities to Allen’s relations 

on the edges. Each relation is assigned a probability, 

and the probabilities on an edge sum to 1. One 

interpretation for the numbers is likelihood. If there 

is no edge between two nodes, we assume the label 

is I, and each relation has equal probability 1/13.  

The process of computing in IA network is based 

on Chapman-Kolmogorov functional equation. 

Through this approach, we formulate the solution 

finding as a Markov process, i.e., each solution is 

constructed as a Markov Chain. Each interval in IA 

network is abstracted as a state and the relation 

represent the transition probability as shown in 

Figure 9.  

During the computation, a set of solutions are 

generated based on fundamental searching algorithm 

in graph theory. And then various generated 

solutions are formulated as different Markov Chain. 

Based on the Chapman-Kolmogorov functional 

equation (1), we compare different computing result 

and pick up the greatest value as the most probable 

result. 
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Fig.9. Markov solution Chain 

As shown in figure 9, for example, when n=0 the 

probability of the system being in the state i is q(i), 

i.e., q(i)=p{X0=i}, then the absolute probability of 

the system being in the state k is given by 
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We use the all solutions feature presented in the 

previous section to solve a probabilistic IA network. 

We first strip off the probabilities, and then generate 

and store all the solutions. For each solution, we 

compute a value by re-assigning a probability to 

each label in the solution and taking the product 

based on the Chapman- Kolmogorov functional 

equation. The solution with the highest value is the 

solution to the probabilistic network. This extra 

processing is added to the “Java Program” in Figure 

1. The Eclipse code was not modified. It is trivial to 

add code to find the least likely, or median solution. 

Since finding a single solution to an IA network is 

an NP complete problem, finding all the solutions is 

not feasible for large difficult problem instances. 

Our implementation is targeted at small instances.  

7. Conclusion and Future Work 

IA networks are finite domain CSPs. They can be 

translated either into non-binary or binary CSPs 

Pi Pj 

~Pi ~Pj 

…… Pk 

~Pk 

i j k 
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with finite integer domains. Given an arbitrary IA 

Network, it can be translated into an equivalent 

Integer-CSP. An Integer-CSP is a finite domain 

binary CSP. Off the shelf software can be used to 

solve the Integer-CSP. Solutions can then be 

translated back to IA Network solutions. Integer-

CSPs are a subset of binary CSP problems. It is not 

the case that all binary CSPs can be translated to an 

equivalent IA Network problem. But, binary CSPs 

are equivalent to Reduced-Interval-CSPs. Solving 

the IA network associated with a Reduced-Interval-

CSP can sometimes reduce the size of the Reduced-

Interval-CSP problem and therefore simplify it.  

Future work will involve generating large IA 

networks and comparing the efficiency of our 

implementation described in this paper. We need 

also do optimizing the software. One enhancement 

we are investigating, is exploiting the presence of 

“cut edges” or “bridges” in the network. These 

edges can be found in linear time using a DFS based 

algorithm. Either of the labels on the bridge can 

appear in a solution, and they do not influence other 

labels. If we remove the bridge, we are left with two 

smaller networks that can be solved quickly and 

their solutions combined. Our implementation is of 

benefit to non-technical users. The user does not 

need to learn specialized software and algorithms. 

The implementation allows the user to draw any IA 

network and solve it. Emphasis is on ease of use, not 

efficiency. We challenge the reader to find a simpler 

and more direct method for solving qualitative IA 

networks. 

To our knowledge, this is the first time most 

probable solution to a probabilistic IA network has 

been solved. Unfortunately, only small size 

problems can be tackled with the approach 

described in this paper.  
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