
Retrieving the Most Probable Solution

in a Temporal Interval Algebra Network

HAIYI ZHANG & XINYU XING & ANDRE TRUDEL

Jodrey School of Computer Science,

Acadia University

Wolfville, Nova Scotia, B4P 2R6

CANADA

haiyi.zhang@acadiau.ca & 085094x@acadiau.ca & andre.trudel@acadiau.ca

Abstract: - In this paper, we propose a probability-based approach to retrieve the most probable

solution in a temporal Interval Algebra (IA) network. In our approach, all probable solutions are

abstracted as a Markov Chain. Based on this Markov Chain, we utilize Chapman-Kolmogorov

functional equation to compute the most probable solution. Furthermore, in order to achieve easy and

friendly operations for IA network’s researchers, we attempt to adopt constraint logic programming

to implement software which is able to support temporal an IA network. The implementation of the

software is based on finite domain non-binary CSPs. In addition, we briefly provide an application of

retrieving the most probable solution to show the functions of software. Through experiments, we

conclude that the implementation can satisfy the desired goal.

Key-Words: - Logic, temporal reasoning, CSP, Constraint logic programming, Chapman-Kolmogorov.

1. Introduction

An IA (interval algebra) network is a graph where

each node represents an interval. Directed edges in

the network are labeled with subsets of I. By

convention, edges labeled with I are not shown. An

IA network is consistent (or satisfiable) if each

interval in the network can be mapped to a real

interval such that all the constraints on the edges

hold (i.e., one disjunct on each edge is true) [6],[7].

The implementations mentioned above are non-

trivial. The user must be an expert in the

implementation language and software. The average

user is not capable of making even simple

extensions or modifications. We present an

implementation which is probably not as efficient as

the ones previously mentioned. Our goal is user

friendliness and ease of use. The user draws an IA

network, and then clicks a button for a solution. The

target audience is researchers that need to quickly

verify or generate a few solutions, and students

entering the temporal area.

2. Markov Chain in Glance[8]

A Markov chain is a series of states of a system that

has the Markov property. At each time the system

may have changed from the state it was in the

moment before, or it may have stayed in the same

state. The changes of state are called transitions. If a

sequence of states has the Markov property, it means

that every future state is conditionally independent of

every prior state given the current state.

Markov Chain can be modeled as a sequence of

random variables X1, X2, X3, … with the Markov

property, namely that, given the present state, the

future and past states are independent. i.e.,

()
().|

,...,|

1

111

nnn

nnn

xXxXp

xXxXXp

===

==

+

+

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 268

3. IA Networks & Binary CSPs

We adopt Tsang’s [3] binary CSP definition. A

binary CSP of n variables x1, …, xn has a domain Di

of possible values associated with each variable xi.

Each Di is finite, and it may not necessarily be the

case that all the domains are equal. A binary

constraint, Rij, between variables xi and xj is a subset

of the Cartesian product of their domains. Each Rij is

finite. We also require that (a,b) ∈ Rij if and only if

(b,a) ∈ Rji. An IA network is a binary CSP with

infinite domains. The intervals are the variables. The

domain of each variable is the set of pairs of reals of

the form (x,y) where x < y. The constraint between

two variables i and j is the label on the edge (i,j) in

the IA network. During the past two decades,

research on IA networks and finite domain CSPs has

progressed relatively independently. The reason is

that algorithms specifically designed for finite

domains are usually not applicable to infinite

domains. It was not widely known that IA networks

are indeed finite domain CSPs. For example, van

Beek and Manchak [5] write that “two of their

heuristics cannot be applied in our context as the

heuristics assume a constraint satisfaction problem

with finite domains, whereas IA networks are

examples of constraint satisfaction problems with

infinite domains”.

Recently, Thornton et al. [2] show how to convert

an IA network into an equivalent non-binary CSP

with finite integer domains. They observe that the

relative positions of the interval endpoints in an IA

network can be used to determine consistency. For

example, X = (10,15) and Y = (100.5,110) is a

solution to X{b}Y. This solution imposes the

ordering X- < X+ < Y- < Y+ on the endpoints where

X= (X-,X+) and similarly for Y. A simpler solution

is to number the endpoints from left to right which

results in X = (1,2) and Y= (3,4).

An IA network with two intervals is consistent if

and only if each interval can be mapped to a pair of

integers (a, b) where a < b, and a, b∈{1,2,3,4} such

that the constraint on the edge holds. Note that it

might be the case that endpoints from different

intervals get mapped to the same integer (e.g., as in

the case of X {=}Y). Thornton et al. [2] generalize

the integer mapping to:

Theorem: Each interval in an IA network with n

intervals can be mapped to a real interval such that

all the constraints on the edges hold if and only if

each interval in the IA network can be mapped to an

interval with integer end-points in the range 1…2n

such that all the constraints on the edges hold.

Based on theorem, Thornton et al. [2] convert an IA

network to a non-binary CSP with finite domains.

Each endpoint becomes a variable with domain

{1,…,2n}. A label on an edge from X to Y in the IA

network imposes a constraint on some or all of the

variables X-, X+, Y-, and Y+. For example, X {d} Y

generates the constraint (Y- < X-) & (X+ < Y+)

which is non-binary since the constraint involves 4

variables. They then apply local search techniques

on the non-binary CSP.

We use the finite domain transformation described

above. But instead of local search, we use Eclipse

and constraint logic programming techniques to

solve the IA network.

4. Architecture and Implementation

An overview of our implementation’s components is

given in figure 1 (copied from Paper [4]). The user

interacts with the implementation via the graphical

user interface (GUI). The GUI, built using jGraph

(http://www.jgraph.com/), has 2 windows. The user

enters a graph in the top window. There are buttons

for drawing nodes and edges. The nodes represent

intervals and are each numbered 1, 2, etc. Allen’s

interval relationships are entered on the edges

separated by commas. There are no restrictions on

the size or shape of the graph. When the user clicks

on the button to request a solution, the solution is

drawn in the GUI’s bottom window. The graph is re-

drawn as entered by the user. Each edge will be

assigned a unique label. The entire graph is

consistent. If not consistent, a warning message is

displayed instead.

Fig. 1. Implementation

Example: 3-colour problem

Assume we have the binary CSP shown in figure 2

where the domain for each variable is {r,g,b} and

the constraint on each edge is {(r,g), (r,b), (g,r),

GUI

Java Program

CLP Template

CLP Code Eclipse

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 269

(g,b), (b,r), (b,g)} (i.e., no adjacent nodes are

assigned the same color).

Fig. 2. CSP

Fig.3. IA network solution

To construct P2, we associate 1 with r, 2 with g, and

3 with b. In P2, each node has domain {1,2,3} and

the constraint on each edge is {(1,2), (1,3), (2,1),

(2,3), (3,1), (3,2)}. We have |U|=3, n=3, and n(2n-

1)=15. To convert P2 to a reduced-integer-CSP, case

1 applies. In the reduced-integer-CSP, each domain

is {1,…,15}, and the constraints are the same as P2.

The ordered domain for each variable in the

reduced-interval-CSP is {(1,2), (1,3), (1,4), (1,5),

(1,6), (2,3), (2,4), (2,5), (2,6), (3,4), (3,5), (3,6),

(4,5),(4,6),(5,6)} and each constraint is

{((1,2),(1,3)),((1,2),(1,4)), ((1,3),(1,2)), ((1,3),(1,4)),

((1,4),(1,2)), ((1,4),(1,3))}.

The IA network has the same variable domains as

the reduced-interval-CSP, and each constraint is

{s,si}. A solution is shown in figure 3. Note that IA

network consistency solvers typically return a

solution that involves a single label (i.e., one of

b,bi,m,mi,o,oi,d,di,s,si,f,fi,=) associated with each

edge in the network. They do not return integer

endpoint or real interval instantiations for the

intervals (nodes).

The standard conversion of the constraint label {s}

in figure 3 into a reduced-interval-CSP label would

include tuples such as ((3,4),(3,6)). This tuple is not

allowed in the original reduced-interval-CSP and

therefore should not be included in the conversion.

The permitted constraint tuples in the reduced-

interval-CSP corresponding to the labels in figure 9

are shown in figure 4. Note that the number of

tuples in each constraint has been reduced by half.

Fig. 4. Reduced-interval-CSP partial solution

Fig. 5. Reduced-interval-CSP solution

Although each constraint tuple in the resulting

reduced-interval-CSP solution is locally consistent,

not every constraint tuple in figure 4 is part of a

globally consistent solution. Binary CSP algorithms

can be applied to figure 4 to generate a solution as

shown in figure 5. The corresponding reduced-

integer-CSP and P2 solutions are shown in figure

62. The final solution is shown in figure 7.

Fig. 6. Final solution

{s} {s}

{si}

{((1,3),(1,2)), ((1,4),(1,2)), ((1,4),(1,3))}

{((1,2),(1,3)), ((1,2),(1,4)), ((1,3),(1,4))}

{((1,2),(1,3)), ((1,2),(1,4)), ((1,3),(1,4))}

{((1,3),(1,4))}

{(1,2)} {(1,4)}

{(1,3)}

{((1,4),(1,2))}

{((1,2),(1,3))}

{1} {(3,1)} {3}

{(2,3)

}
{(1,2)}

{2}

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 270

Fig.7. Reduced-integer-CSP and P2 solution

5. Execution Flow

After the user has entered a graph and requested a

solution, control is given to the Java program in

figure 1. The program first reads in a constraint

logic program template. The template is updated

with information from the particular graph to solve.

The completed logic program is then passed on to

Eclipse. Eclipse will solve the graph and then pass

the solution to the Java program. The java program

will then display the solution in the GUI.

The CLP template file contains constraint code

for Allen’s relations [1]. The relations are

implemented by placing restrictions on the

endpoints. For example, interval (XL,XR) is before

(YL,YR) if and only if XR < YL. In Eclipse, we

write: b(XL,XR,YL,YR,1) :- XR < YL. The “1” in

the last parameter of b is a numeric representation of

b and is used to keep track of the relationships on

the edges. The relations are numbered from 1 to 13.

The after relationship bi is implemented in terms of

before: bi(XL,XR,YL,YR,2) :- b(YL,YR,XL,XR,1).

The other relations are similarly implemented. The

CLP template file also contains clauses to enforce

that the left endpoint of each interval precedes its

right endpoint.

The Java program copies the contents of the CLP

template file to the CLP code file. Graph specific

code is then added to the file. Assume we are given

an IA network with n intervals (nodes) numbered

from 1 to n. The left and right endpoints of the i’th

interval are labeled Li and Ri respectively. The set

of endpoints is represented in Eclipse as: EndPoints

= [L1,R1, L2,R2,…,Ln,Rn]. For example, if n=4 we

have: EndPoints = [L1,R1, L2,R2, L3,R3, L4,R4].

The range of each interval endpoint must be

explicitly specified and is between 1 and 2n. In

Eclipse, this is written in the following format:

EndPoints :: 1..2n. For example, if n=4 we write:

EndPoints :: 1..8.

The edges are also numbered. For example, if

there are 5 edges: Edges = [E1, E2, E3, E4, E5].

Every edge constraint is a disjunction of

relationships. We represent the disjunction directly.

For example, let the constraint on edge E1 between

intervals 1 and 2 be meets or overlaps (i.e., {m,o}).

This constraint is represented in Eclipse as: (

m(L1,R1, L2,Y2,E1); o(L1,R1, L2,Y2,E1)).

Singleton labels are represented directly. For

example if instead we have {m} we write: m(L1,R1,

L2,Y2,E1).

The problem’s constraints have now all been

specified and we request Eclipse to generate a

solution with the query: finda_solution(Edges). If a

solution is found, Edges will be bound to a list of

integers. Each integer represents an Allen relation

for an edge.

6. Most Probable Solution

Figure 8 is a screenshot of the GUI. The top

window contains the IA network entered by the

user. The solution is shown in the bottom window.

The CLP code file generated for this example is in

paper [4]. Note that it is typical that only 1 page of

Eclipse code is generated to solve the IA network.

Fig. 8. The screenshot of the GUI

Consider the simple IA network in figure 4.

Assume we are only interested in solutions that

assign a single label to the edges. For example, we

don’t care about the temporal relationship between

the two bottom nodes. Every label can appear in a

solution for a total of 8 solutions. The

straightforward approach for finding all these

solutions is to first find one solution, and then

{(r,g)}

{r} {b} {(b,r)}

{(g,b)}

{g}

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 271

backtrack to find the others. But, we must be careful

what we backtrack over:

Labels: Traditional IA network software assumes

that each pair of nodes has an edge between them. If

an edge is not explicitly shown, it is assumed to

have a label of I. If we backtrack over the labels in

the network, we must consider 17,576 possible

solutions. Notice the combinatorial explosion with a

network of only 4 nodes!

Endpoints: If instead, we use software based on

Thornton et al’s approach [4], we have a network of

4 nodes and must find an assignment of each

interval’s endpoints to an integer in the range from 1

to 8. Assume we have the label “b” between two

nodes X and Y. There are 70 different ways that the

endpoints of X and Y can be assigned to integers in

the range from 1 to 8 so that X {b} Y holds. For

example, one assignment is X = (1,2) and Y = (5,8).

For meets, there are 56 different assignments for the

endpoints.

Note that in the above, the worst case number of

possibilities to backtrack over is given. Clever

algorithms and heuristics can reduce the number of

possibilities.

Another approach is to backtrack over the

candidate solutions. We first generate a candidate

solution which has one label on each edge. We

check if this is a solution. We then generate the next

candidate solution and so on. This is the approach

we adopt and experiment with in this paper.

The code for finding a single solution was left

untouched. We added code to the “CLP Code” file

which first generated all the possible solutions. We

then apply the original code for finding a single

solution to each possible solution to verify if indeed

it is a solution. The set of valid solutions are passed

back to the “Java Program”. The program stores the

solutions in a two dimensional array and displays

the solutions in the GUI one at a time.

Let us now add probabilities to Allen’s relations

on the edges. Each relation is assigned a probability,

and the probabilities on an edge sum to 1. One

interpretation for the numbers is likelihood. If there

is no edge between two nodes, we assume the label

is I, and each relation has equal probability 1/13.

The process of computing in IA network is based

on Chapman-Kolmogorov functional equation.

Through this approach, we formulate the solution

finding as a Markov process, i.e., each solution is

constructed as a Markov Chain. Each interval in IA

network is abstracted as a state and the relation

represent the transition probability as shown in

Figure 9.

During the computation, a set of solutions are

generated based on fundamental searching algorithm

in graph theory. And then various generated

solutions are formulated as different Markov Chain.

Based on the Chapman-Kolmogorov functional

equation (1), we compare different computing result

and pick up the greatest value as the most probable

result.

()() () ()∑
∞

=

=
0

,

i

n

ji

n piqjq (1)

Fig.9. Markov solution Chain

As shown in figure 9, for example, when n=0 the

probability of the system being in the state i is q(i),

i.e., q(i)=p{X0=i}, then the absolute probability of

the system being in the state k is given by

=

⋅

pp

pp

pp

pp

pp

pp

jj

jj

ii

ii (2)

jiji
ppppp ⋅+⋅= (3)

We use the all solutions feature presented in the

previous section to solve a probabilistic IA network.

We first strip off the probabilities, and then generate

and store all the solutions. For each solution, we

compute a value by re-assigning a probability to

each label in the solution and taking the product

based on the Chapman- Kolmogorov functional

equation. The solution with the highest value is the

solution to the probabilistic network. This extra

processing is added to the “Java Program” in Figure

1. The Eclipse code was not modified. It is trivial to

add code to find the least likely, or median solution.

Since finding a single solution to an IA network is

an NP complete problem, finding all the solutions is

not feasible for large difficult problem instances.

Our implementation is targeted at small instances.

7. Conclusion and Future Work

IA networks are finite domain CSPs. They can be

translated either into non-binary or binary CSPs

Pi Pj

~Pi ~Pj

…… Pk

~Pk

i j k

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 272

with finite integer domains. Given an arbitrary IA

Network, it can be translated into an equivalent

Integer-CSP. An Integer-CSP is a finite domain

binary CSP. Off the shelf software can be used to

solve the Integer-CSP. Solutions can then be

translated back to IA Network solutions. Integer-

CSPs are a subset of binary CSP problems. It is not

the case that all binary CSPs can be translated to an

equivalent IA Network problem. But, binary CSPs

are equivalent to Reduced-Interval-CSPs. Solving

the IA network associated with a Reduced-Interval-

CSP can sometimes reduce the size of the Reduced-

Interval-CSP problem and therefore simplify it.

Future work will involve generating large IA

networks and comparing the efficiency of our

implementation described in this paper. We need

also do optimizing the software. One enhancement

we are investigating, is exploiting the presence of

“cut edges” or “bridges” in the network. These

edges can be found in linear time using a DFS based

algorithm. Either of the labels on the bridge can

appear in a solution, and they do not influence other

labels. If we remove the bridge, we are left with two

smaller networks that can be solved quickly and

their solutions combined. Our implementation is of

benefit to non-technical users. The user does not

need to learn specialized software and algorithms.

The implementation allows the user to draw any IA

network and solve it. Emphasis is on ease of use, not

efficiency. We challenge the reader to find a simpler

and more direct method for solving qualitative IA

networks.

To our knowledge, this is the first time most

probable solution to a probabilistic IA network has

been solved. Unfortunately, only small size

problems can be tackled with the approach

described in this paper.

Acknowledgements

We thank Wei Zhu and Changxin Liu for coding

version 1 of the implementation for their senior

undergraduate project.

References:

[1] J.F. Allen. Towards a general model of action

and time, Artificial Intelligence, 23(2), 1984, p. 123-

154.

[2] J. Thornton, M. Beaumont, A. Sattar, and M.

Maher. A local search approach to modeling and

solving interval algebra problems, The journal of

logic and computation, 4(1), 2004, p. 93-112.

[3] E. Tsang. Foundations of constraint satisfaction,

Academic Press, 1993.

[4] A. Trudel, H. Zhang “ Finding a solution. All

the soultions, or the most probable solution to a

temporal interval algebra network” 5
th
 World

Enformatika Conference WEC 2005, Volume 7,

Page 299-303, Prague, Czech Republic, August

2005.

[5] P. van Beek and D.W. Manchak. The design and

experimental analysis of algorithms for temporal

reasoning, Journal of Artificial Intelligence

Research, 4, 1996, p. 1-18.

[6] Nebel. Solving hard qualitative temporal

reasoning problems: evaluating the efficiency of

using the ORD-Horn class, Constraints, 1, 1997, p.

175-190.

[7] V. Ryabov and A. Trudel. Probabilistic

Temporal Interval Networks, 11
th
 International

Symposium on Temporal Representation and

Reasoning (TIME 2004), Tatihou Island, France,

2004, p. 64-67.

[8] A.T. Bharucha-Reid. Elements of the Theory of

Markov Processes and Their Applications. New

York: McGraw-Hill, 1960.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 273

