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Abstract: - P System computational power lies in its non-deterministic, distributed and massively parallel nature. 
So, it would be desirable for every implementation of a P System to achieve, as far as possible, these features. In 
this paper, we suggest a distributed architecture of processors called master-slave, in which communications are 
directed by a single processor, called ‘master’, and a series of processors called ‘slaves’ whose task is to apply 
evolution rules to the multisets they receive from the master. To prevent collision and network congestion, 
communications between master and slaves occur in an organized way. Furthermore, some membranes are 
allocated in each processor and, finally, proxies are used to communicate with membranes allocated in different 
processors. All this yields better parallelism in the system as a whole than in previously published studies. In 
addition to this, we present an analytic study that establishes a series of equations that allows us to accurately 
determine the optimum number of processors needed, the required time to execute an evolution step, the number 
of membranes to be located in each slave processor and the conditions that will determine when it is best to use 
this distributed solution or the ones that have previously been proposed, and even the sequential one.  
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1   Introduction 
The possibilities that natural computation offers and, 
in particular, the Transition P Systems, for the 
resolution of problems have led researchers to focus 
their work on hardware and software 
implementations of this new model of computation. 
Transition P systems were presented by Gheorghe 
Pãun in 1998 [1], who based his work on basic 
features of biological membranes. A membrane 
defines a region where a series of chemical elements 
(multisets) may undergo a series of chemical 
reactions (evolution rules) and produce other 
elements. Inside the region limited by a membrane 
there may be, at the same time, other membranes 
creating a complex, hierarchical structure that can be 
represented by a tree. Products generated by the 
chemical reactions may stay in the same region or 
travel to container region or to the regions contained 
by a membrane. As a result of this reaction, a 
membrane may dissolve itself - its chemical elements 
transfer to the container membrane - or inhibit itself 
(the membrane becomes impermeable and does not 
allow any object to pass). 

 
Membranes systems are dynamic as the chemical 
reactions inside them produce elements that cross the 
frontiers of the membranes, travel to other regions 
and produce new reactions. This dynamic behavior 
can be sequenced in a series of evolution steps 
between one and another configuration system that 
will be determined by the membrane structure and 
multisets present within membranes. In the transition 
P systems formal model two phases are distinguished 
in each evolution step: rules application and 
communication. In the rules application phase, its 
rules are applied inside each membrane, in a 
exhaustive and non deterministic way, to the 
multisets in parallel. Once the previously described 
phase has concluded, the communication phase 
begins and the multisets generated travel towards the 
target membranes. These systems perform a 
computation through transition between two 
consecutive configurations, transforming themselves 
into computational devices with the same capacities 
as Turing machines. 
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The power of this computation model lies in the fact 
that the process is massively parallel in the rules 
application phase as well as in the object 
communication phase. The challenge for researchers 
is to achieve hardware or software implementations 
of P systems with a high degree of parallelism. 
 
The aim of this paper is to achieve a distributed 
implementation of a P System whose step evolution 
time is as short as possible by increasing parallelism 
in both application and communication phase. 
 
The paper is structured as follows: first, related works 
are enumerated and the proposed architectures 
analyzed; next, a communication architecture model 
is introduced stating its economical and 
computational cost as well as its viability; then, a 
more detailed analysis is offered of the model and, 
finally, conclusions are drawn. 
 
2   Related Works 
A large number of studies propose implementations 
of a P system in a single processor [2], and these are 
strictly sequential in nature.  
 
On the contrary, few papers have addressed the 
possibility of implementation of a distributed cluster 
of processors. Syropoulos [4] and Ciobanu [3], in 
their distributed implementations of P systems, use 
Java Remote Method Invocation (RMI) and the 
Message Passing Interface (MPI) respectively, on a 
cluster of PCs connected by Ethernet. These authors 
do not provide a detailed analysis of the importance 
of the time used during the communication phase in 
the total time of P system evolution, although 
Ciobanu states that “the response time of the program 
has been acceptable. There are, however, executions 
that could take a rather long time due to unexpected 
network congestion” [3]. Specifically, 
implementation of the second phase of an evolution 
step, communication between membranes, has not 
received the same level of attention from the research 
community. 
 
The paper by Tejedor [5] reviews two models of 
communication software architectures and proposes 
an alternative. The first, called “parallel 
application/parallel communication,” consists of an 
implementation that reflects the massively parallel 
nature of P systems: each processor has a membrane 
and it will have as many communication interfaces as 
children. Nowadays, this is unfeasible because 
current technology does not allow a processor to have 
as many communication interfaces as membranes are 
connected to it. 

  
The second approach, called “parallel 
application/sequential communication”, is more 
realistic because it is more feasible technologically: 
all processors are connected to a common bus 
through a communication interface governed by a 
protocol. However, this is also unfeasible because 
massive amounts of time are used in an evolution 
step, and this time grows lineally with the number of 
membranes, even causing network congestion. 
 
For his part, Tejedor [5] proposes “distributed 
architecture with both application and communication 
phases partially parallel”. To achieve this, he relies 
on the following pillars: 
 
1. In each processor, K membranes are located that 

will evolve, at worst, sequentially. Where  

P
MK =

,     K ≥ 1 (1) 
And M is the total number of membranes of the P 
System and P the number of processors of the 
distributed architecture. Physical interconnection 
between processors is through a common 
communications line. In this scenario, there are 
two sorts of communications: 
• Internal communications are those between 

membranes in the same processor.  
Communication times are negligible because 
they occur through use of shared memory 
techniques. 

• External communications are those between 
different processors because the membranes 
that need to communicate are in different 
processors. 

 
The benefit obtained is that the number of the 
external communications decreases.  

 
2. Creation of proxy. Membranes in different 

processors do not communicate directly. Instead, 
they communicate through proxies in their 
respective processors. Proxies are used to 
communicate between processors. A proxy 
handles the communications between the 
membranes in a processor and the proxy of 
another processor. In the same way, information 
received from other proxies is redistributed to the 
membranes in its own processor. 
 
The benefit of using proxies in communication 
among membranes instead of direct 
communication is double. First, the N packets 
necessary to achieve communication of N 
membranes with the same parent are transformed 
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into a single packet which length is the 
corresponding to a single multiset. Second, given 
that communication protocols penalize the 
transmission of small packets due to protocol 
overhead, communicating N messages of L 
length is slower than one message of (N * L) 
length. 

 
3. Topology in a processor tree. The benefit of a 

topology in an interconnection tree among 
processors lies in how it minimizes the total 
number of external communications carried out, 
because proxies exchange information only with 
its immediate antecessor and direct successors 
and thus, the total number of external 
communications is 2(P-1). 
 

4. Token passing in communication to prevent 
collisions and network congestion. For each 
processor, a communication order is established. 
As a result, no more than one proxy can attempt 
to transmit at any given time. 

 
The analysis of this distributed architecture by [5] is 
as follows: 
 
• This solution prevents communication collisions 

and reduces the number and length of the 
external communications. 
 

• In this model, the minimal time is expressed in 
the formula: 

 comcomapl TTTMT 222min −=
 (2) 

 
Where, Tapl is the maximum time used by the 
slowest membrane in applying its rules, and Tcom 
is the maximum time used by the slowest 
membrane for communication. 
 

• The number of membranes housed per processor 
that makes the time minimal is: 

apl

com
opt T

TMK 2
=

  (3) 
 

• The number of processors that make the time 
minimal is: 

 com

apl
opt T

TM
P

2
=

  (4) 
 

• Also, this architecture is highly scaleable, at a 
moderate cost. The cost is moderate compared to 

previously proposed architectures because the 
latter required a total number of processors (P) 
which was equal to the number of membranes 
(M); however, this architecture needs only 
about M . 
 

• From a throughput perspective, the system is 
more balanced than previous ones to the extent 
that an operating percentage of 50% is 
maintained in processors and communications. 
 

• Also, it offers better step evolution times than 
one-processor solution when the P System’s 
number of membranes is:  

 apl

com

T
TM 8>

      (5) 
 
3   Master-Slave Distributed 
Architecture  
This paper presents a new distributed architecture 
which, like previous architecture, maintains the 
parallelization of the application phase, but also seeks 
to parallelize the rule application phase in some 
processors with the communication phase in others. 
To do this, a series of processors will take on the role 
of slaves and one processor will act as the master. 
Moreover, all will be linked by a common 
communications medium. The functions of each are 
as follows: 
 
• Each slave (PS) houses K membranes, processes 

multisets and sends the master multisets whose 
destination is in a membrane in another slave. 

• The master (PM) redistributes the multisets to the 
proper slaves. The master contains no 
membranes. 

 
 

(1) (2) 

(5) (6) 

(4) 

(8) 

(3) 

(7) 

Figure 1.  Master-Slave Distributed Model: One 
Master and Four Slaves 
 
The innovative aspect of this model is that when a 
slave processor receives multisets from the master, it 
begins to apply rules autonomously (and parallel) 
from the other slave processors. Thus, while 

PS1 PS2 PS3 PS4 

PM 
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communication is occurring – master with the slaves 
– some slave processors are applying rules. That is, 
the external communication time overlaps with the 

application time, which is not the case in [5]. The 
timeline in figure 2 shows when the two phases of an 
evolution step occur in different processors: 

 

 
Figure 2. Timeline for Master-Slave Distributed Model with One Master and Four Slaves 

E3 
E4 

E2 

E1 
M 

  1st Evol. step 

Tcom

ty tz
Tapl

tx 

  2nd Evol. step  3rd Evol. step  4th Evol. step 

 
As always, the time of an evolution step is from the 
moment processors apply their rules until results 
reach the destination membranes. In this model, the 
first evolution step, slaves already have their 
multisets and begin to apply their rules immediately. 
Now, in the result communication phase of this first 
evolution step, at the tx moment when the master 
sends the firs slave the multisets to be processed, this 
slave begins to apply rules in what is now the second 
evolution step.  
 
This overlapping of evolution steps is repeated for the 
remainder. From that moment onward, overlapping 
occurs because of the parallelism between the 
communication phase and application of rules; that is, 
because while the master is sending multisets of an 
evolution step, there are slave processors applying 
rules in the next evolution step. This parallelism 
occurs from the moment the master communicates 
with the first slave until it sends the multiset to the 
last slave (interval tx-ty).  
 
Finally, there is also parallelism in the rule 
application phase, for it can be seen that in the time 
interval delimited by ty-tz, all slave processors are 
applying rules simultaneously. 
 
3.1 Bases of New Model 
As in the Tejedor model [5]: 
1. There are K membranes in each slave processor 

in order to increase the number of internal 
communications - whose communication time is 
negligible – and thereby reduce the total number 
of external communications. 

2. There is a proxy in each of the processors so that 
communication between their membranes 
(master-slave and vice-versa) is through proxies. 

 
The following pillars are specific to the model 
proposed herein, and which seek to improve the 
architectures described above: 
 
3. Order in Communications. To eliminate 

collisions and congestion of the common 
communication medium, there is an order of 
communication with the slaves. For this reason, 
each of the slave processors will receive an order 
number (or position) so that communications in 
the two directions (master  slave and slave  
master) are orderly. Specifically, the 
communication policy consists of the following: 

 
• The master: distributes work (multisets) to 

different slaves. When it finishes delivering 
work, it awaits results from slaves 

 
• The slaves: begin to apply evolution rules to 

a multiset as soon as they receive them from 
the master. When they complete application 
of evolution rules, they have to communicate 
their results to the master. However, to 
prevent collisions with other slaves, they wait 
their turn to do so. Since slaves need not end 
in order, and because they may have to wait 
to communicate with the master, 
communications are in broadcast mode, so 
the rest will know when it is their turn to 
broadcast. 

 

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007      329



4. Flat communications architecture: slave 
processors do not communicate among 
themselves, but only with the master; for its part, 
the master processor communicates only with 
slave processors. In this scenario, communication 
occurs at a single level - from many to one and 
from one to many - that is, there are no 
hierarchies or connection trees between 
processors. The physical interconnection between 
master and slave is through a common 
communication line. 

 
4   Detailed Analysis of Master-Slave 
Model 
In this model, given that each slave processor has K 
membranes, the total time of the rule application 
phase is K * Tapl. Thus, the time (T) to execute a 
complete evolution step – i.e., delivery of multisets to 
slaves, rule application time and return of results - is 
as follows: 

   (6) )1( ++= PTTKT comapl

 
One of the most important parameters which will 
determine if the architecture is valid is the total 
number of slave processors (Popt) needed to make the 
evolution step time minimal. Thus, we set the time 
(6) according to the number of processors and 
achieve: 

 com

apl
opt T

TM
P =

                           (7) 
 
Hence, by replacing in (6) the optimal number of 
slave processors (7), the minimal time (Tmin) needed 
for an evolution step is: 

 comcomapl TTTMT += 2min             (8) 
 
For its part, the optimal number of membranes (Kopt) 
with regards to the optimal number of slave 
processors (Popt) which gives a minimal time (Tmin) is: 

 apl

com
opt T

TMK =
                         (9) 

 
The expressions that determine the throughput of the 
processor (Thproc) and of the communication line 
(Thcom) are the following: 
 

 comcomapl

comapl
proc TTTM

TTM
Th

+
=

2
           (10) 

 

 comcomapl

comapl
com TTTM

TTM
Th

+
=

2

2

   (11) 
 
If we ignore the value of Tcom, expressions (10) and 
(11) are reduced to Thproc≈0.5 and Thcom≈1, then the 
system achieved is balanced, in terms of processor 
performance, and the communication line is fully 
occupied. 
 
Finally, the cost of the system is approximately 
double that of the model “architecture with 
application and communication partially parallel” 
because double the number of processors is required 
for the same P System.  
 
4.1 Possible Time Improvements 
Given that occupation of the communication line, i.e., 
throughput, is 100%, improving times of an evolution 
step would require dealing with the other factor 
involved, namely the rule application time. In fact, it 
is feasible for software engineers to make the rules of 
K membranes in a processor apply more quickly by 
developing quicker sequential algorithms and making 
them execute in parallel. If Tapl can be made to be N 
times faster, and if we apply it to the equations Kopt 
(9), Popt (7) and Tmin (8), we will see that both the 
number of membranes executed in a processor and 
the time required to execute an evolution step would 
improve by approximately a N  factor, while the 
number of processors required would be divided by 
the same N  factor 
 
4.2 Advantages of Distributed Model Over 

One-Processor Model 
The time required to execute an evolution step in an 
architecture of one processor, and therefore no 
external communications, is:  

 aplTMT =    (12) 
As this paper has presented a new distributed master-
slave architecture that offers evolution step times 
determined by (8), it would be interesting to know, 
for a given P system, at what number of membranes 
would it be better to use the latter or one based on a 
single processor.  That is, in what conditions is (8) 
lower than (12): 
 

 aplcomcomapl TMTTTM 〈+2
     (13) 

 
In resolving the inequality we get the expression 
below, which indicates that when the number of 
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membranes of the P system is greater than that value 
– which is a constant – the solution with a number of 
processors is superior. 

 apl

com

T
TM 8.5〉

   (14) 
 
5   Comparative Analysis 
As the model proposed by Tejedor [5] offers 
reasonable times and costs, we shall compare it with 
the model proposed herein in order to ascertain which 
can be more efficient: 
 
A. By comparing expressions of the minimal times 

(9) and (2), and given that Tcom is negligible 
compared to the high number of membranes (M), 
we obtain a proportion of 2

1 , that is, that this 
new model reduces the minimal time by 30%. 
This model achieves better times for the 
following reasons: 

 
a) In [5], the communication phase can begin 

only when all the processors are done 
applying their rules. However, in the model 
proposed herein, the application of the 
evolution step ‘n’ is parallelized with the 
communication stage of the previous step ‘n-
1’. Hence, there is a parallelism between 
rules application and external 
communications: while there is processing, 
there is communication. 

 
b) By comparing the expressions of the optimal 

number of processors (7) and (2) we reach 
the formal conclusion that this model has 
double the number of processors. This 
increase in the number of processors means 
that in the rule application phase there is a 
higher degree of parallelism. 

 
c) As a consequence, if there are more 

processors for the same number of 
membranes (M), there will be fewer 
membranes per processor. Indeed, by 
comparing the expressions (9) and (3), it can 
be seen that there are half the number of 
membranes per processor in this new model, 
which means that the application time in 
processors will be shorter. 

 
B. To determine the number of membranes above 

which the times (2) in the Tejedor model [5] are 
longer than in the model herein (8), we obtain the 
expression:  

 apl

com

T
TM 11.13〉

  (15) 
 
By comparing the values in (5), (14) and (15), 
which indicates in terms of minimal times, above 
what number of membranes (M) which 
architecture is preferable, we obtain the 
following chart: 

 

 
Figure 3.  Optimal architecture according to number 
of membranes 
 
C. Finally, but just as important, the simplicity of 

this method of communication between the 
master processor and the slaves makes it suitable 
for implementation with low-cost micro-
controllers [6] for two reasons: 

 
a) Precisely because it is a flat architecture, that 

is, not hierarchical, it comfortably satisfies 
the interconnection specifications 
(synchronization and ICC communication 
protocol) through a common data bus used in 
these micro-controllers. 

 
b) Requirements for processor resources and/or 

memory are lower. 
 
6   Conclusion 
The software architecture proposed in this paper is 
based on a master processor that distributes work to a 
series of slave processors that apply rules. Moreover, 
it places several membranes in each processor, uses 
proxies for communication among processors, 
flattens the communication architecture and, finally, 
establishes an order in communications of nodes. 
 
All these mechanisms offer improvements of 
previously described architecture in several important 
respects: minimal times of an evolution step, higher 
degree of parallelism between rule application phases 
and external communications, a lack of congestion in 
the communication medium – even with a high 
number of membranes -, independence of the 
topology of the P system, possible implementation of 
architectures based on micro-controllers and, finally, 
though of no less importance, the architecture is 
highly scalable and has moderate costs. 
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