
Modified Branch and Bound Algorithm

AZLINAH MOHAMED, MARINA YUSOFF, SOFIANITA MUTALIB, SHUZLINA

ABDUL RAHMAN

Faculty of Information Technology & Quantitative Sciences

Universiti Teknologi MARA

40450 Shah Alam, Selangor

MALAYSIA
azlinah@tmsk.uitm.edu.my, marinay@tmsk.uitm.edu.my, sofi@tmsk.uitm.edu.my,

shuzlina@tmsk.uitm.edu.my

Abstract: - There are various techniques available to solve or give partial solution to constraint

satisfaction problem. This paper presents a modification of branch and bound algorithm, which is

used to solve a constraint satisfaction problem in map colouring problem. There are two

constraints involved in which only three colours are allowed to use and adjacent regions in the

map must not be of the same colour. The modified branch and bound algorithm uses back

jumping when it encounters a dead-end in the search. Static variable ordering was also applied to

aid the searching process. The modified branch and bound algorithm shows a better result in

terms of the number nodes instantiated and reduced the number of backtracking at dead ends. The

result illustrated that the modified branch and bound algorithm with the use of variable ordering

technique is better if compared to backjumping. Thus, it is concluded that the modified branch

and bound algorithm would improve constraint satisfaction problem.

Keywords:- Branch and Bound Algorithm, Backjumping, Constraint Satisfaction Problem, Static

Variable Ordering

1 Introduction
Constraints are used in everyday life to guide

reasoning. Naturally, humans do not solve one

constraint but a collection of constraints that

are rarely independent. Examples of

constraints represented in daily life are

restrictions, requirements, regulations,

preferences and machine capacity, to name a

few. Constraint Satisfaction Problem (CSP) is

a technique where one has to find a value for a

finite set of variables satisfying a finite set of

constraints [1]. In other words, the complete

solution to the problem would be to assign

possible values to the set of variables that do

not defy any constraints [2].

There exist quite a number of techniques

used in solving CSP [3, 4]. Each has its own

advantages and disadvantages. They are

binarisation of constraints, systematic search

algorithms, consistency techniques, constraint

propagation, variable & value ordering,

reducing search, and heuristics & stochastic

algorithms [5, 6, 7]. From these techniques,

branch and bound (B&B) algorithm was

chosen for this study. Possible modifications

to the B&B algorithm was done and applied to

solve a CSP problem and the results obtained

were critically analysed.

2 Branch and Bound Algorithm
B&B algorithm is a general search method and

may be among the most widely used algorithm

for finding optimal solutions [8]. It is a depth-

first search where internal nodes represent

incomplete assignments and leaf nodes

represent complete ones. B&B uses a heuristic

function, h that approximates the objective

function, f. A heuristic for a minimization

problem represents an underestimate, h(x) <=

f(x) whereas for a maximization problem it

will be represented by an overestimate, f(x) <=

h(x). B&B algorithm would map every

complete labeling of variables (solution) to a

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 274

numerical value.

At the start of the search, the value for the

bound is set to infinity. As the search

proceeds, the bound will be set to the value of

the best solution found so far. B&B algorithm

will perform a depth-first traversal through the

search tree. It uses chronological backtracking

[9] when it encounters a dead-end but at the

same time, it will also compute the value of

the heuristic function for the labeling. If the

value exceeds the bound then the subtree will

be pruned. The search proceeds until all nodes

have been solved or pruned, or until some

specified threshold is met between the best

solutions found and the bound. This algorithm

will be efficient if it is represented by a good

heuristic function and a good bound [10].

3 Modified B&B Algorithm
The B&B algorithm is a depth-first search

using chronological backtracking. When using

chronological backtracking, the algorithm

would generate sub-trees that are identical to

previously explored sub-trees. This problem

would contribute to the inefficiency of the

search. Three modifications were introduced

to overcome this problem. The first

modification is by combining B&B with static

variable ordering. The second modification is

by combining B&B with backjumping and the

third is by combining B&B with static variable

ordering and back jumping. Before detailing

the combinations, static variable ordering and

back jumping will be explained.

3.1 Static Variable Ordering
According to Bartak [2], the order in which

variables are chosen for instantiations can

have an impact on the complexity of backtrack

search. Static variable ordering specifies that

variables are ordered before the search begins.

The degree of the heuristic was determined as

the heuristic value for selecting the variable

ordering. This heuristic chooses the variable

that has the largest number of constraints with

the past variable as the variable to be

instantiated next. The coloured adjacent state

will be the next variable to be instantiated.

The search will then proceed among its

neighbours. The neighbour with the most

constraint will be chosen next. This will go on

until all the variables are assigned. This is

beneficial in the long term because it can

reduce the average depth of branches in a

search tree [11].

3.2 Backjumping
Backjumping is an intelligent version of the

chronological backtracking. Instead of

backtracking to the parent node (as displayed

by chronological backtracking), backjumping

jumps to the highest node that conflicted with

the current variable. This can reduce the

amount of thrashing
1
. Other than that, the

overhead cost is small in maintaining the

consistency checks done to determine the

backtracking point [12].

3.3 B&B with Static Variable

Ordering
This algorithm starts with the ordering

procedure. The static variable ordering

algorithm in Section 3.1 is used. The new

ordered list of variables will then be the initial

variables for the search. The search will use

the B&B algorithm as stated in Section 2

above.

3.4 B&B with Backjumping
Whenever the B&B algorithm discovers a

dead-end, it will backtrack. This backtracking

can be changed into back jumping with a few

alterations. Below is the new modified

algorithm of B&B with Backjumping. This

algorithm has an array that stores the latest

variable in the ordering list that conflict with

the current value.

It will perform consistency checks each

time a variable is instantiated with a value. If

1
 generating sub-trees that are identical to

previously explored sub-trees by instantiating

variables that play no role in the current

inconsistency.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 275

Step I: Initialize the upper bound to 0.

Step 2: Check to see if the leaf node has been

reached. If true then the best solution

is found currently. If it is not a leaf

node, then go to step 3.

Step 3: Set array J to 0. This array will store

the latest variable in the ordering that

was tested for consistency with

variable X.

Step 4: Choose the next variable from the

list. Assign a value and check with

upper bound. If it is equal to the

upper bound, repeat step 4. If it is

above the upper bound, then go to

step 5.

Step 5: If value for the current variable is

equal to the value of past variable,

then choose the next value. If all

values were chosen and variable

remains inconsistent then proceed to

step 5.

Step 6: (Backjump). Select variable XJcur as

the next variable to assign a value.

Go to step 4.

there is an inconsistency, then it will

backjump to the variable in the list according

to the index of the inconsistent variable.

Backjumping will only occur if there is a dead
end. If the inconsistency can be eliminated

with a change of value, then normal

backtracking is sufficient enough.

Fig. 1 Modified Algorithm of B&B and

Backjumping

3.5 B&B with Static Variable

Ordering with Backjumping
Before the search begins, the variables are

ordered using the static variable ordering

algorithm as described in Section 3.1 above.

The ordered list is then used as the initial

variables for the B&B tree. Whenever the

algorithm encounters a dead end, it will use

back jumping. The algorithm for this

procedure is explained in Section 3.4 above.

4 Result and Analysis
The modified algorithms discussed in Section

3 were compared to the B&B algorithm

without any modification. The comparison is

based on whether the algorithms can solve the

same map colouring problem, the time taken

for each algorithm to solve the problem, the

number of backtracking at dead-ends that

occurred and the number of nodes instantiated.

Prolog built-in predicate ms/2 is used to time

the search. The predicate calls the goal and

returns the duration of its execution.

The modified algorithms have been tested

to instantiate states in West Cost of Malaysia.

It has covered fourteen (14) states namely;

Perak, Negeri Sembilan, Johor, Selangor,

Pulau Pinang, Pahang, Kedah, Perak, Wilayah

Persekutuan, Melaka, Terenganu, Perlis,

Kelantan, and Melaka. The results are as

discussed in the next section.

4.1 B&B
The B&B algorithm was able to solve the

problem in approximately 7 milliseconds (ms)

with three backtracking at dead-end. The

result is shown in Table 1. B&B algorithm

would perform chronological backtracking

when dead-end is encountered. However, this

had a very small impact on the performance.

Backtracking had to be done a few times

before the algorithm reached the same nodes

of the conflict which is situated four levels

above the inconsistent node. The number of

nodes instantiated was twenty-one (21). This

shows that there is a need to include intelligent

backtracking in the B&B algorithm, which

theoretically can improve the performance of

the search and reduce the number of nodes

instantiated.

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 276

 Table 1. Result of B&B algorithm

4.2 B&B with Variable Ordering
The B&B algorithm was then included with

variable ordering. The static ordering ordered

the variables according to the variables that

had the most number of constraints with the

previous variable. The ordering was generated

three times to see the effects on the time taken

to solve the problem and also the number of

nodes instantiated. The result is as illustrated

in Table 2. There was not much difference in

time recorded as compared to B&B without

variable ordering. But there were no

backtrackings at dead-ends recorded because

the algorithm never reached a dead-end. This

reduced the number of nodes instantiated from

twenty-one (21) with B&B without any

modifications to twelve (12).

Table 2. Results of different variable

orderings on time, backtracking and number of

nodes instantiated

This result is rather interesting because the

algorithm does not seem to require intelligent

backtracking since the algorithm does not

encounter dead-ends. As a matter of fact, if

intelligent backtracking were to be included,

there is a theoretical possibility that the saving

occasionally intended for reducing the search

space would actually be undone by the

overhead of computing and maintaining the

extra information.

Order of

variables
perlis,n - sembilan,

johor,selangor, pulau yinang,

w yersekutuan, pahang,

kedah,perak,melaka,

terengganu,kelantan

Number of

Backtracking

at dead ends

3

Number of

nodes

instantiated

21 (perils, n sembilan

johor, selangor, pulau pinang,

w yersekutuan

pahang, kedah, kedah

wpersekutuan, pahang

kedah, kedah, pulau pinang,

w_persekutuan, pahang,

kedah, perak

melaka, terengganu,

kelantan}

Solution [kelantan,green]

[terengganu,red]

[melaka,blue] [perak,red]

[kedah,blue] [pahang,blue]

[w yersekutuan,red] [pulau

yinang,green] [selangor

,green] [johor,green]

[n - sembilan,red] [perlis,red]

Variable

Ordering

Time

(ms)

Number of

Backtracking

at dead-ends

Number

of

nodes

instantiat

ed

pahang, perak,

selangor,

n_sembilan,

johor,

melaka,w_perse

kutuan,

kelantan,

terengganu,

kedah,

pulau_pinang,

perlis

9 0 12

pahang,

selangor , perak,

kelantan,

terengganu,

kedah,

pulau_pinang,

perlis,

n_sembilan,

johor, melaka,

w_persekutuan

8 0 12

Pahang, johor,

n_sembilan,

selangor, perak,

kelantan,

terengganu,

kedah,

pulau_pinang,

perlis,

w_persekutuan,

melaka

9 0 12

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 277

4.3 B&B with Backjumping
The B&B algorithm was modified with back

jumping. Backjumping will only occur when

the algorithm reaches a dead-end. It will still

perform chronological backtracking when a

conflict occurs. The result of the algorithm is

as shown in Table 3.

Table 3. Result of B&B with Backjumping

Algorithm

Order of

variables

perlis, n_sembilanjohor,

selangor, pulau_pinang,

w_persekutuan, pahang,

kedah,

perak, melaka, terengganu,

keantan

Number of

Backtracking

at dead ends

1

Number of

nodes

instantiated

15

(perlis, n_sembilan, johor

selangor, pulau pinang

w –persekutuan, pahang

kedah, w -persekutuan

pahang, kedah, perak

melaka, terengganu

kelantan)

Solution [kelantan,green]

[terengganu,red]

[melaka,blue]

[perak,red]

[kedah,blue]

[pahang, blue]

[w -persekutuan,red]

[pulau pinang,green]
[selangor ,green]

[johor,green]

[n _sembilan,red]

[perlis,red]

This algorithm was able to solve the problem.

There was also a very small difference in the

time recorded to solve the problem. It took 10

ms to solve the problem. It came upon a dead-

end only once and handled it with back

jumping. The number of the nodes instantiated

was greatly reduced from twenty one (21) to

fifteen (15) as compared to B&B without back

jumping because the algorithm did not do

chronological backtracking when encountering

a dead end.

4.4 B&B with Variable Ordering

and Backjumping
The B&B algorithm was modified with the

combination of two algorithms, which are

variable ordering and backjumping. The

algorithm has no problem in solving the map

coloring problem. As anticipated, there was no

backjumping because the algorithm did not

encounter a dead end.

The number of nodes instantiated was

smaller when compared to B&B with

backjumping because the search did not

encounter a dead-end. In terms of time taken,

the modifications had little effect because

there was not much difference recorded. The

time it took to solve the problem was

approximately nine (9) ms. Table 4 shows the

four criteria considered in comparing the

algorithms.

Table 4: Results of each algorithm

Algorithm
Time

(ms)

Number of

Backtracking

at dead-ends

Number of

Backjumpi

ng

at dead-

ends

Number of

nodes

instantiated

B&B 7 3 0 21

B&B +

Variable

Ordenng

9 0 0 12

B&B +

Backjumpin

g

10 0 1 15

B&B +

Variable

Ordering +

Backjumpin

g

9 0

0 2

Although there are differences in the

variables such as the time taken to solve the

problem, the number of nodes instantiated and

the number of backtracking at dead ends, the

differences are minimal. This is because the

problem considered a small number of nodes.

5 Conclusion
The B&B with backjumping algorithm has the

ability to jump to the same nodes of

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 278

inconsistency rather than backtrack

chronologically up the branch. After it back

jumps, it will prune the search tree and explore

other branches that will not create previous

inconsistencies. This reduces the search space

and adds efficiency to the search. The number

of nodes instantiated was also greatly reduced

when compared with B&B without

backjumping. This modified algorithm only

detects inconsistency when it comes across

one. It does not predict inconsistencies, which

could hypothetically improve search.

B&B with variable ordering did not

require a backjumping procedure because the

search never encountered a dead-end. The

number of nodes instantiated is smaller when

compared to B&B with back jumping. In

terms of the number of nodes instantiated, it

can be concluded that B&B with variable

ordering is better compared to B&B with

backjumping.

Acknowledgment

The authors would like to sincerely thank to

our research student, Itaza Afiani Mohtar for

her valuable work that support this research.

References:

[1] Freuder, E. C, and Mackworth, A. (ed),

(1994). Constraint-Based Reasoning. MIT

Press, 1994. Taken from Tsang, E. (1999)

A Glimpse of Constraint Satisfaction.

Journal Artificial Intelligence Review,

13,215-227.

[2] Tsang, E, A. Glimpse of Constraint

Satisfaction. Journal Artificial Intelligence

Review, Kluwer Academic Publishers,

The Netherlands.Vol. 13, 1999. pp. 215-

227.

[3] Baker, A. B. “Intelligent Backtracking on

Constraint Satisfaction Problems:

Experimental and Theoretical Results”,

PhD thesis, University of Oregon, 1995.

[4] Bruynooghe, M. (2003). Enhancing a

Search Algorithm to Perform Intelligent

Backtracking.

http://arxiv.org/abs/cs.AIl0311O03, (Dec

24, 2003)

[5] Dechter, R, and Frost, D. (1999)

Backtracking Algorithms for Constraint

SatisfactionProblems,http://repositOlYZS

zpaperszSzsurveyR56.pdf/dechter99backtr

acking.pdf , (Sept 9, 2003)

[6] Frost, D. H. (1997) Algorithms and

Heuristics for Constraint Satisfaction

Problems. Pill Thesis, University of

California Irvine. (on line)

http://www.ics.uci.edu/"'CspIR69.pdf,

(Dec 21, 2003)

[7] Meseguer, P. et al (2003) Current

Approaches for Solving Over-constrained

Problems. Journal Constraints, Kluwer

Academic Publishers, The Netherlands,

Vol. 8, 2003, pp. 9-39.

[8] Lawler, E. W., and Wood, D. E. Branch

and Bound Methods: A Survey in

Operations Research, 14, 1977, pp. 99-

118.

[9] Kondrak, G. (1994) A Theoretical

Evaluation of Selected Backtracking

Algorithms. (online)

http://citeseer.nj.nec.com/43467.html,

(Sept 4, 2003)

[10]Bartak, R. (1999) Constraint

Programming : In Pursuit of The Holy

Grail.

http://citeseer.ist.psu.edu/cache/papers/cs/

13544/http:zSzzSzwww.insol.co.ilzSzWD

S99.pdf/bartak99constraint.pdf , (Sept 5,

2003)

[11]Russell, S. I., and Norvig, P. Artificial

Intelligence A Modem Approach 2
nd

Edition, Pearson Education Inc, New

Jersey, 2003

[12]Gaschnig,J. G. Performance Measurement

and Analysis of Certain Search

Algorithms. PhD Thesis, Carnegie Mellon

University, Pittsburgh, 1979

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007 279

