
Dynamic Memory Allocation for CMAC using Binary Search Trees

PETER SCARFE EUAN LINDSAY
Department of Mechanical Engineering

Curtin University of Technology
Bentley, Western Australia

AUSTRALIA
peter.scarfe@postgrad.curtin.edu.au, e.lindsay@curtin.edu.au

http://www.mech-eng.curtin.edu.au/lindsay

Abstract: - Cerebellar Model Articulation Controllers (CMACs) are a biologically-inspired neural network
system suitable for trajectory control. Traditionally, CMACs have been implemented using hash-coding for
their memory allocation, requiring static allocation of fixed amounts of memory in advance to the training of
the system. This paper presents a method for implementing CMACs using Binary Search Trees to provide
dynamic memory allocation, allowing for lower memory usage without compromising the functionality of the
CMAC.

Key-Words: - CMAC, binary search trees, dynamic memory allocation, memory algorithms

1 Introduction
The Cerebellar Model Articulation Controller
(CMAC) designed by Albus [1, 2], was originally
designed to be used as a robotic controller. The
CMAC was inspired by the biological cerebellum,
the part of the brain found in ‘higher animals’ that
can learn and control fine and precise movements of
the animal’s muscles. Playing the piano or even
speaking are both muscle actuations in humans that
require precise control over certain muscles, either
individually or together, as a function of time.
Originally designed by Albus to perform rote
learning of movements of an artificial arm, CMACs
have since been used extensively in a wide variety
of systems from controllers to classifiers. The
CMAC is able to learn the dynamic properties of a
manipulator or actuator, and then respond to a
desired input trajectory by producing the desired
control response on the connected actuator. The
more diverse the dynamic training data presented,
the more skilled the CMAC will become. A solid
biological explanation of the brains cerebellar and
motor control complexity and behaviour is provided
in [3-5].

Since Albus proposed the CMAC in 1975, several
research groups have been using the CMAC with
considerable success in a variety of applications
from data mining classifiers [6-8] to unmanned
aerial vehicle controllers [9], as well as several other
uses. For a comprehensive list of CMAC uses and
applications, Miller and Glanz’s implementation of
the CMAC paper provides a good list of CMAC

uses prior to 1996 [10] and themselves utilized the
CMAC in a number of real-time applications [11].

2 The CMAC Model
The CMAC uses a series of mappings (Fig 1),
starting from an input vector S to an output vector or
some scalar output value p, with various mappings
in-between.

S → M → A → p
‘S’ represents an input vector of multiple
dimensions. ‘M’ represents the single dimensional
components in CMAC input space. ‘A’ represents
the multi-dimensional representation receptive fields
of ‘S’. ‘A’ directly corresponds to the weights
associated with ‘S’. The summation of weights in
‘A’ then produces the output, ‘p’. Albus’s 1981
book [4] gives a comprehensive explanation of the
CMAC.

Fig 1 - Block Diagram of Albus's CMAC for a
single joint actuator [4].

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 61

Every input vector for each dimension in a CMAC
excites several receptive field (RF) vectors for the
same dimension. These receptive fields are parallel
overlapping layers that exist over the input space
(Fig 2). In this example the input vector (3,9)
corresponds to receptive fields Ac, Gj and Nq for
RF Layer 1, 2 and 3 respectively. The receptive
fields that overlap the excited input vector are thus
the corresponding excited receptive fields.

Fig 2 – From Input Vector to Receptive Fields

Each receptive field is directly linked to a weight in
memory. Thus the address of the corresponding
weight can be accessed by the address of the
receptive field. In the example above the receptive
field vectors are (1,7), (2,8) and (3,9) for receptive
fields Ac, Gj and Nq respectively.

CMACs require memory addresses to store each
corresponding receptive field weight. There are two
major obstacles that determine how this memory
allocation is preformed. If there were no memory
limitations, then each memory address could be
accessed directly for every possible weight. If there
were no time limitations, then it would be possible
to use minimal amounts of memory using sequential
search methods. However, this is not the case.

Traditionally the CMAC memory requirement has
been compressed by a method called hashing (or
‘hash-coding’) to reduce the memory requirements,
making the CMAC practical to implement [12].
Efficient use of the available memory and fast
access to the memory are the prime concerns of any
hashing method [13]. This method was suggested to

be used with the CMAC by Albus [1, 2] as a way to
make the CMAC implementable on the hardware
available at the time.

The downside to using hashing is that hash
collisions may result. A hash collision occurs when
two sets of data are stored at the same memory
address. Hash collisions provide unfavourable
effects on the convergence of the CMAC [14] and
result as noise at the output. While methods have
been designed to deal with hash collisions [10, 13],
the static memory addressing and limited capability
to utilize 100% of only the previously addressed
memory weights provides only a partial solution to
efficient memory handling.

In addition to hash coding, Hsu and Hwang, et al.
[15] proposed a CMAC with a Content Addressable
Memory (CAM) which is used in place of the hash
coding method. This method uses a memory content
search method to search for identical data in
memory which has been previously assigned to a
particular input vector. If no match is found, then the
next available memory location is assigned to the
new input vector. This way 100% of the memory is
utilised, and grows unsupervised whenever the
CMAC is presented with new input vectors.

The CMAC memory storage method here provides a
dynamic solution over previous static methods. The
code was written in the C programming language,
and adapted from the freely available University of
New Hampshire CMAC code [10], with the hashing
memory allocation removed and replaced with the
dynamic implementation presented in this paper.

3 Dynamic CMAC Memory
Allocation
Dynamic allocation of memory when using CMACs
on conventional personal computers is a most
desirable property, as it is often not known how
much memory is required to be allocated for a
particular CMAC prior to its usage. Once the
CMAC matures, if more memory is needed than was
originally anticipated, unless the memory can be
allocated when needed, the CMAC will fail to adapt
further while retaining previously learnt knowledge.

Dynamic allocation of memory is particularly useful
when a CMAC goes offline and data is required to
be stored or transferred from its fast access online
memory, to its slow access offline memory, usually
a hard disk. Storing only the weights which have

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 62

actually been used is preferable over storing large
amounts of unused data predefined by the size of the
static table allocated. For large systems utilizing an
array of CMACs, the unused portions of memory
produce an unnecessary memory storage overhead
both in time and space.

4 Binary Search Trees
Binary Search Trees (BSTs) are a widely used
method for storing data sets. Binary search trees are
dynamic, requiring no advance information on the
number of insertions needed. They also provide
guaranteed worst case performance [13].

Binary search trees are named from their binary
search property. A tree is made up of nodes as
illustrated in Fig 3, with each node having two lower
legs, with each leg linking to another node, which in
turn connects to more nodes. Thus a parent-child
structure is apparent, with the contents of the parent
node always searched before the contents of its child
nodes. The structure of the BST is such that all keys
that are less than the parent node are stored in one
sub-tree, with all keys that are greater than the
parent node stored in the other tree. Thus when the
parent node is searched, if the value of the key is not
equal to the key being searched, then a less than or
greater than comparison is made. The result then
leads to the next comparison with one of the child
nodes. And so the process continues throughout the
tree until the correct value is found.

Node Contains:
- Key
- Data
- Address to lower child node
- Address to higher child node

Key
&

Data

Address to
higher child node

Address to
lower child node

Fig 3 - Single Binary Search Tree Node

The efficiency of data access times throughout a
BST is dependent on the number of nodes to be
searched before the required node is found. For
optimal data access times, a BST should be
balanced. If perfectly balanced the maximum
number of nodes to be traversed will be no more
than |log2(N)+1| comparisons, where N is the total
number of nodes in the tree.

However when a BST is to be created, it is often
impossible to create a perfectly balanced tree. The
nodes would have to be inserted in a perfect order.
Since most data sets are not known before insertion

into a tree, randomly inserting the nodes into a tree
will produce a close to balanced tree. On average, a
search in a BST built from N random keys requires
about 2loge(N) comparisons [13].

Data in a BST can be easily manipulated; the nodes
can be rearranged in any order required for optimal
search efficiency. Thus building a BST by randomly
inserting nodes can be rearranged into a balanced
BST by simply sorting the nodes in order and then
building a balanced BST. Fig 4 illustrates this
process.

Fig 4 - Binary Tree Balancing – From Unbalanced
to Balanced Tree

The BST with CMAC was implemented on a 32-bit
processor, using four separate segments of data,
each of 32 bit size. This requires 16 bytes of
memory per node. Each node contains a key to
locate the data in the BST, a CMAC weight, and two
memory addresses (pointers in C) to the child nodes
of the current parent node. This is illustrated in Fig
5.

Fig 5 - Structure of data contained in each node
within physical memory

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 63

Nodes were created in blocks of 1 MB as required,
though this is totally customizable. Whilst there is
the potential to allocate memory for each and every
node, this adds considerable overhead to the
insertion process. Allocating blocks reduces this, at
the cost of having up to 1 MB of unused memory at
any given time.

5 Node Key Generation
It is essential for each node in a BST to have a
unique identifying key. The simplest way to form
this key is to use the information regarding which
receptive field in the CMAC is excited. The most
obvious choice is to use the vector of an excited
receptive field (RF) in input space resolution.
However this is not the most memory efficient way
to identify the receptive field key in a BST.

As illustrated in Fig 5, the key in each node is a 32-
bit number. Thus there is a limitation as to how
much data can be stored in 32 bits. As each key is a
vector containing the dimensional vectors for each
dimension, the data in the 32 bits needs to be both
unique for any receptive field and hold as much
information as possible. For a CMAC with a four
dimensional input space, a 32 bit number can hold
four lots of 8 bit data (Fig 6). Thus if each input
space dimension has a resolution of 256 (8bits) then
32 bits can adequately hold a unique key for each
excited input vector.

Fig 6 - Four Vectors Represented as a 32bit Integer

Using the receptive field vector is also another way
of representing unique keys in a BST. As each
receptive field layer is independent from all other
layers, a set of parallel data sets is generated. Each
data set is to be assigned its own BST and thus this
will produce in effect unique keys for each receptive
field layer BST. While the vector will not be
globally unique as in the case when using input
space vector keys, the keys will still be unique to
their own layer, and thus their own BST.

The local generalization property of the CMAC is a
result of mapping an input space vector to a set of
overlapping yet offset larger receptive fields. As
each receptive field is larger than an input space

vector, the resolution of each receptive field is less
than the resolution of the input space. For example,
take a four dimensional CMAC with input space
resolution of 2048 (11bits) quantized units per
dimension. With a CMAC generalization factor of 8,
meaning that the CMAC will have 8 receptive field
layers, each receptive field layer will be 8 times
larger per input space unit, per dimension. This
means that the resolution of each receptive field per
dimension will be 2048/8 = 256. The number 256
can be stored in 8 bits of data, and thus since it is the
receptive field vectors which are to be used to
identify the keys in the BST, a CMAC with an four
dimensional input space resolution of 11 bits per
dimension can now be stored in 32 bits of data. This
increases the input space resolution from 256 to
2048 per dimension.

The extraction of the receptive field layer vectors
from the input space receptive field vectors is
illustrated in Fig 8, overleaf.

The inherent nature of trajectory data posed a
potential problem for the BST method of data
storage. Because trajectories are continuous,
consecutive data points will activate substantially
similar receptive fields, and thus generate
substantially similar keys. Building a BST from
sequential keys leads to highly unbalanced trees,
which do not present the desired advantages of
efficient BST build and search speeds.

Inserting the nodes in a random order will achieve a
more balanced tree, however this is not possible
when the data is not all known in advance. The
appearance of randomness, however, can be
achieved through a scrambling process.

For each receptive field vector, a scrambling array
was generated (see Fig 7 below). This array
uniquely maps each of the original keys to a random
number between 0 to the maximum RF vector value.

Fig 7 - Random Node Key Generator Array

The scrambled keys generated for each dimension i
are the keys used as the receptive field vectors for
their appropriate dimensions in Fig 6. The final
32bit key is then used directly as the key for a node

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 64

Fig 8 – Input Vector to Unique RF Vectors in Receptive Field Space

in the binary search tree for the key’s corresponding
receptive field layer. These keys are sufficiently
‘random’ for the tree to ensure that the BST that is
generated is close to a balanced tree for whatever
sequence of input vectors the CMAC encounters.

For optimal results however, close to balanced is not
enough – the tree must be fully balanced. This
process as illustrated in Fig 4 then can only be
efficiently implemented whilst the CMAC is offline.

6 Conclusion
The CMAC controller architecture has been
successfully developed in a 32-bit implementation
of C using Binary Search Trees for memory storage.
This allows for dynamic memory allocation, rather
than the static memory allocation offered by the
traditional hash-code memory implementations.

An innovative approach to key generation utilises
the receptive field properties of the CMAC to
uniquely identify nodes, and to exploit the structure
of the CMAC to simplify the storage process. A
process of key scrambling overcomes the challenges
involved in building Binary Search Trees from near-
sorted data, allowing for balanced (and thus
efficient) trees to be constructed from trajectory data
inputs.

This implementation allows for CMAC data to be
stored in a smaller memory allocation – only the
used weights are stored, without the need to store
blank space for ‘future’ weights. In addition, the
implementation allows mature CMACs to continue
learning, without the constraint of a pre-determined
maximum memory size.

The BST implementation allows for the advantages
of dynamic memory allocation without
compromising the functionality of the CMAC. This
allows for CMACs to be implemented using fewer
memory resources without a loss of capability.

References:
[1] J. S. Albus, "A new approach to manipulator

control: The cerebellar model articulation
controller (CMAC)," Transactions of the
ASME: Journal of Dynamic Systems,
Measurement, and Control, pp. 220-227, 1975.

[2] J. S. Albus, "Data Storage in the Cerebellar
Model Articulation Controller (CMAC),"
Transactions of the ASME: Journal of Dynamic
Systems, Measurement, and Control, pp. 228-
233, 1975.

[3] J. C. Houk, J. T. Buckingham, and A. G. Barto,
"Models of the Cerebellum and Motor
Learning," Behavioral and Brain Sciences, vol.
19, pp. 368-383, 1996.

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 65

[4] J. S. Albus, Brains, Behavior and Robotics.
Massachusetts: Byte Publications, 1981.

[5] R. L. Smith, "Intelligent Motion Control with
an Artificial Cerebellum," PhD Thesis,
Department of Electrical and Electronic
Engineering. University of Auckland, 1998.

[6] D. Cornforth, "The Kernel Addition Training
Algorithm: Faster Training for CMAC based
Neural Networks," presented at the Conference
of Artificial Neural Networks and Expert
Systems, Otago, 2001.

[7] G. Horvath, "CMAC: Reconsidereing an Old
Neural Network," presented at The Intelligent
Control Systems and Signal Processing
(ICONS), Faro, Portugal, 2003.

[8] G. Horvath, "Kernal CMAC: an Efficient
Neural Network for Classification and
Regression," Acta Polytechnica Hungarica, vol.
3, pp. 5-20, 2006.

[9] F. G. Harmon, A. A. Frank, and S. S. Joshi,
"The Control of a Parallel Hybrid-Electric
Propulsion System for a Small Unmanned
Aerial Vehicle using a CMAC Neural
Network," Neural Networks, vol. 18, pp. 772-
780, 2005.

[10] W. T. Miller and F. H. Glanz, "The University
of New Hampshire Implementation of the
Cerebellar Model Arithmetic Computer -
CMAC," Robotics Laboratory, University of
New Hampshire, Durham, New Hampshire
1996.

[11] W. T. Miller, F. Glanz, and L. G. Kraft,
"CMAC: An associative neural network
alternative to backpropagation," Proceedings of
the IEEE, vol. 78, 1990.

[12] Z.-Q. Wang, J. L. Schiano, and M. Ginsberg,
"Hash-coding in CMAC neural networks,"
presented at IEEE International Conference on
Neural Networks, Washington, DC, USA, 1996.

[13] R. Sedgewick, Algorithms in C. USA: Addison-
Wesley Publishing Company, Inc., 1990.

[14] T. Szabo and G. Horvath, "CMAC and its
Extensions for Efficient System Modeling and
Diagnosis," International Journal of Applied
Mathematics and Computer Science, vol. 9, pp.
571-598, 1999.

[15] Y.-P. Hsu, K.-S. Hwang, and J.-S. Wang, "An
Associative Architecture of CMAC for Mobile
Robot Motion Control," Journal of Information
Science and Engineering, vol. 18, pp. 145-161,
2002.

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, 2007 66

