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Abstract: - Cerebellar Model Articulation Controllers (CMACs) are a biologically-inspired neural network 
system suitable for trajectory control.  Traditionally, CMACs have been implemented using hash-coding for 
their memory allocation, requiring static allocation of fixed amounts of memory in advance to the training of 
the system.  This paper presents a method for implementing CMACs using Binary Search Trees to provide 
dynamic memory allocation, allowing for lower memory usage without compromising the functionality of the 
CMAC. 
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1 Introduction  
The Cerebellar Model Articulation Controller 
(CMAC) designed by Albus [1, 2], was originally 
designed to be used as a robotic controller. The 
CMAC was inspired by the biological cerebellum, 
the part of the brain found in ‘higher animals’ that 
can learn and control fine and precise movements of 
the animal’s muscles. Playing the piano or even 
speaking are both muscle actuations in humans that 
require precise control over certain muscles, either 
individually or together, as a function of time. 
Originally designed by Albus to perform rote 
learning of movements of an artificial arm, CMACs 
have since been used extensively in a wide variety 
of systems from controllers to classifiers. The 
CMAC is able to learn the dynamic properties of a 
manipulator or actuator, and then respond to a 
desired input trajectory by producing the desired 
control response on the connected actuator. The 
more diverse the dynamic training data presented, 
the more skilled the CMAC will become. A solid 
biological explanation of the brains cerebellar and 
motor control complexity and behaviour is provided 
in [3-5]. 
 
Since Albus proposed the CMAC in 1975, several 
research groups have been using the CMAC with 
considerable success in a variety of applications 
from data mining classifiers [6-8] to unmanned 
aerial vehicle controllers [9], as well as several other 
uses. For a comprehensive list of CMAC uses and 
applications, Miller and Glanz’s implementation of 
the CMAC paper provides a good list of CMAC 

uses prior to 1996 [10] and themselves utilized the 
CMAC in a number of real-time applications [11]. 
 
 
2 The CMAC Model 
The CMAC uses a series of mappings (Fig 1), 
starting from an input vector S to an output vector or 
some scalar output value p, with various mappings 
in-between. 

S → M → A → p 
‘S’ represents an input vector of multiple 
dimensions. ‘M’ represents the single dimensional 
components in CMAC input space. ‘A’ represents 
the multi-dimensional representation receptive fields 
of ‘S’. ‘A’ directly corresponds to the weights 
associated with ‘S’. The summation of weights in 
‘A’ then produces the output, ‘p’. Albus’s 1981 
book [4] gives a comprehensive explanation of the 
CMAC. 
 

 
Fig 1 - Block Diagram of Albus's CMAC for a 
single joint actuator [4]. 
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Every input vector for each dimension in a CMAC 
excites several receptive field (RF) vectors for the 
same dimension. These receptive fields are parallel 
overlapping layers that exist over the input space 
(Fig 2). In this example the input vector (3,9) 
corresponds to receptive fields Ac, Gj and Nq for 
RF Layer 1, 2 and 3 respectively. The receptive 
fields that overlap the excited input vector are thus 
the corresponding excited receptive fields. 
 

 
Fig 2 – From Input Vector to Receptive Fields 
 
Each receptive field is directly linked to a weight in 
memory. Thus the address of the corresponding 
weight can be accessed by the address of the 
receptive field. In the example above the receptive 
field vectors are (1,7), (2,8) and (3,9) for receptive 
fields Ac, Gj and Nq respectively. 
 
CMACs require memory addresses to store each 
corresponding receptive field weight. There are two 
major obstacles that determine how this memory 
allocation is preformed. If there were no memory 
limitations, then each memory address could be 
accessed directly for every possible weight. If there 
were no time limitations, then it would be possible 
to use minimal amounts of memory using sequential 
search methods. However, this is not the case. 
 
Traditionally the CMAC memory requirement has 
been compressed by a method called hashing (or 
‘hash-coding’) to reduce the memory requirements, 
making the CMAC practical to implement [12]. 
Efficient use of the available memory and fast 
access to the memory are the prime concerns of any 
hashing method [13]. This method was suggested to 

be used with the CMAC by Albus [1, 2] as a way to 
make the CMAC implementable on the hardware 
available at the time. 
 
The downside to using hashing is that hash 
collisions may result. A hash collision occurs when 
two sets of data are stored at the same memory 
address. Hash collisions provide unfavourable 
effects on the convergence of the CMAC [14] and 
result as noise at the output. While methods have 
been designed to deal with hash collisions [10, 13], 
the static memory addressing and limited capability 
to utilize 100% of only the previously addressed 
memory weights provides only a partial solution to 
efficient memory handling. 
 
In addition to hash coding, Hsu and Hwang, et al. 
[15] proposed a CMAC with a Content Addressable 
Memory (CAM) which is used in place of the hash 
coding method. This method uses a memory content 
search method to search for identical data in 
memory which has been previously assigned to a 
particular input vector. If no match is found, then the 
next available memory location is assigned to the 
new input vector. This way 100% of the memory is 
utilised, and grows unsupervised whenever the 
CMAC is presented with new input vectors. 
 
The CMAC memory storage method here provides a 
dynamic solution over previous static methods. The 
code was written in the C programming language, 
and adapted from the freely available University of 
New Hampshire CMAC code [10], with the hashing 
memory allocation removed and replaced with the 
dynamic implementation presented in this paper. 
 
 
3 Dynamic CMAC Memory 
Allocation 
Dynamic allocation of memory when using CMACs 
on conventional personal computers is a most 
desirable property, as it is often not known how 
much memory is required to be allocated for a 
particular CMAC prior to its usage. Once the 
CMAC matures, if more memory is needed than was 
originally anticipated, unless the memory can be 
allocated when needed, the CMAC will fail to adapt 
further while retaining previously learnt knowledge. 
 
Dynamic allocation of memory is particularly useful 
when a CMAC goes offline and data is required to 
be stored or transferred from its fast access online 
memory, to its slow access offline memory, usually 
a hard disk. Storing only the weights which have 
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actually been used is preferable over storing large 
amounts of unused data predefined by the size of the 
static table allocated. For large systems utilizing an 
array of CMACs, the unused portions of memory 
produce an unnecessary memory storage overhead 
both in time and space. 
 
 
4 Binary Search Trees 
Binary Search Trees (BSTs) are a widely used 
method for storing data sets. Binary search trees are 
dynamic, requiring no advance information on the 
number of insertions needed. They also provide 
guaranteed worst case performance [13]. 
 
Binary search trees are named from their binary 
search property. A tree is made up of nodes as 
illustrated in Fig 3, with each node having two lower 
legs, with each leg linking to another node, which in 
turn connects to more nodes. Thus a parent-child 
structure is apparent, with the contents of the parent 
node always searched before the contents of its child 
nodes. The structure of the BST is such that all keys 
that are less than the parent node are stored in one 
sub-tree, with all keys that are greater than the 
parent node stored in the other tree.  Thus when the 
parent node is searched, if the value of the key is not 
equal to the key being searched, then a less than or 
greater than comparison is made. The result then 
leads to the next comparison with one of the child 
nodes. And so the process continues throughout the 
tree until the correct value is found. 
 
 

Node Contains:
- Key
- Data
- Address to lower child node
- Address to higher child node

Key
&

Data

Address to
higher child node

Address to
lower child node

 
Fig 3 - Single Binary Search Tree Node 
 
The efficiency of data access times throughout a 
BST is dependent on the number of nodes to be 
searched before the required node is found. For 
optimal data access times, a BST should be 
balanced. If perfectly balanced the maximum 
number of nodes to be traversed will be no more 
than |log2(N)+1| comparisons, where N is the total 
number of nodes in the tree. 
 
However when a BST is to be created, it is often 
impossible to create a perfectly balanced tree. The 
nodes would have to be inserted in a perfect order. 
Since most data sets are not known before insertion 

into a tree, randomly inserting the nodes into a tree 
will produce a close to balanced tree. On average, a 
search in a BST built from N random keys requires 
about 2loge(N) comparisons [13]. 
 
Data in a BST can be easily manipulated; the nodes 
can be rearranged in any order required for optimal 
search efficiency. Thus building a BST by randomly 
inserting nodes can be rearranged into a balanced 
BST by simply sorting the nodes in order and then 
building a balanced BST. Fig 4 illustrates this 
process. 
 

 
Fig 4 - Binary Tree Balancing – From Unbalanced 
to Balanced Tree 
 
The BST with CMAC was implemented on a 32-bit 
processor, using four separate segments of data, 
each of 32 bit size. This requires 16 bytes of 
memory per node. Each node contains a key to 
locate the data in the BST, a CMAC weight, and two 
memory addresses (pointers in C) to the child nodes 
of the current parent node. This is illustrated in Fig 
5. 
 

 
Fig 5 - Structure of data contained in each node 
within physical memory 
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Nodes were created in blocks of 1 MB as required, 
though this is totally customizable.  Whilst there is 
the potential to allocate memory for each and every 
node, this adds considerable overhead to the 
insertion process.  Allocating blocks reduces this, at 
the cost of having up to 1 MB of unused memory at 
any given time. 
 
 
5 Node Key Generation 
It is essential for each node in a BST to have a 
unique identifying key.  The simplest way to form 
this key is to use the information regarding which 
receptive field in the CMAC is excited. The most 
obvious choice is to use the vector of an excited 
receptive field (RF) in input space resolution. 
However this is not the most memory efficient way 
to identify the receptive field key in a BST. 
 
As illustrated in Fig 5, the key in each node is a 32-
bit number. Thus there is a limitation as to how 
much data can be stored in 32 bits. As each key is a 
vector containing the dimensional vectors for each 
dimension, the data in the 32 bits needs to be both 
unique for any receptive field and hold as much 
information as possible. For a CMAC with a four 
dimensional input space, a 32 bit number can hold 
four lots of 8 bit data (Fig 6). Thus if each input 
space dimension has a resolution of 256 (8bits) then 
32 bits can adequately hold a unique key for each 
excited input vector. 
 

 
Fig 6 - Four Vectors Represented as a 32bit Integer 
 
Using the receptive field vector is also another way 
of representing unique keys in a BST. As each 
receptive field layer is independent from all other 
layers, a set of parallel data sets is generated. Each 
data set is to be assigned its own BST and thus this 
will produce in effect unique keys for each receptive 
field layer BST. While the vector will not be 
globally unique as in the case when using input 
space vector keys, the keys will still be unique to 
their own layer, and thus their own BST. 
 
The local generalization property of the CMAC is a 
result of mapping an input space vector to a set of 
overlapping yet offset larger receptive fields. As 
each receptive field is larger than an input space 

vector, the resolution of each receptive field is less 
than the resolution of the input space. For example, 
take a four dimensional CMAC with input space 
resolution of 2048 (11bits) quantized units per 
dimension. With a CMAC generalization factor of 8, 
meaning that the CMAC will have 8 receptive field 
layers, each receptive field layer will be 8 times 
larger per input space unit, per dimension. This 
means that the resolution of each receptive field per 
dimension will be 2048/8 = 256. The number 256 
can be stored in 8 bits of data, and thus since it is the 
receptive field vectors which are to be used to 
identify the keys in the BST, a CMAC with an four 
dimensional input space resolution of 11 bits per 
dimension can now be stored in 32 bits of data. This 
increases the input space resolution from 256 to 
2048 per dimension. 
 
The extraction of the receptive field layer vectors 
from the input space receptive field vectors is 
illustrated in Fig 8, overleaf. 
 
The inherent nature of trajectory data posed a 
potential problem for the BST method of data 
storage.  Because trajectories are continuous, 
consecutive data points will activate substantially 
similar receptive fields, and thus generate 
substantially similar keys.  Building a BST from 
sequential keys leads to highly unbalanced trees, 
which do not present the desired advantages of 
efficient BST build and search speeds. 
 
Inserting the nodes in a random order will achieve a 
more balanced tree, however this is not possible 
when the data is not all known in advance.  The 
appearance of randomness, however, can be 
achieved through a scrambling process. 
 
For each receptive field vector, a scrambling array 
was generated (see Fig 7 below). This array 
uniquely maps each of the original keys to a random 
number between 0 to the maximum RF vector value. 
 

 
Fig 7 - Random Node Key Generator Array 
 
The scrambled keys generated for each dimension i 
are the keys used as the receptive field vectors for 
their appropriate dimensions in Fig 6. The final 
32bit key is then used directly as the key for a node  
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Fig 8 – Input Vector to Unique RF Vectors in Receptive Field Space 
 
in the binary search tree for the key’s corresponding 
receptive field layer.  These keys are sufficiently 
‘random’ for the tree to ensure that the BST that is 
generated is close to a balanced tree for whatever 
sequence of input vectors the CMAC encounters. 
 
For optimal results however, close to balanced is not 
enough – the tree must be fully balanced.  This 
process as illustrated in Fig 4 then can only be 
efficiently implemented whilst the CMAC is offline. 
 
 
6 Conclusion 
The CMAC controller architecture has been 
successfully developed in a 32-bit implementation 
of C using Binary Search Trees for memory storage.  
This allows for dynamic memory allocation, rather 
than the static memory allocation offered by the 
traditional hash-code memory implementations. 
 
An innovative approach to key generation utilises 
the receptive field properties of the CMAC to 
uniquely identify nodes, and to exploit the structure 
of the CMAC to simplify the storage process.  A 
process of key scrambling overcomes the challenges 
involved in building Binary Search Trees from near-
sorted data, allowing for balanced (and thus 
efficient) trees to be constructed from trajectory data 
inputs. 
 

This implementation allows for CMAC data to be 
stored in a smaller memory allocation – only the 
used weights are stored, without the need to store 
blank space for ‘future’ weights.  In addition, the 
implementation allows mature CMACs to continue 
learning, without the constraint of a pre-determined 
maximum memory size. 
 
The BST implementation allows for the advantages 
of dynamic memory allocation without 
compromising the functionality of the CMAC.  This 
allows for CMACs to be implemented using fewer 
memory resources without a loss of capability. 
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