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Abstract: - Optimal matrix parenthesization problem is an optimization problem that can be solved using 

dynamic programming. The paper discussed the problem in detail. The results and their analysis reveal that 

there is considerable amount of time reduction compared with simple left to right multiplication, on applying the 

matrix parenthesization algorithm. Time reduction varies from 0% to 96%, proportional to the number of 

matrices and the sequence of dimensions. It is also learnt that on applying parallel matrix parenthesization 

algorithm, time is reduced proportional to the number of processors at the start, however, after some increase, 

adding more processors does not yield any more throughput but only increases the overhead and cost. Major 

advantage of the parallel algorithm used is that it does not depend on the number of matrices. Moreover, work 

has been evenly distributed between the processors. 
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1   Introduction 
In most systems there are many processes that are 

running simultaneously. Recall that multiplying an     

x x y matrix by a y x z matrix creates an x x z matrix. 

Thus multiplying a chain of matrices from left to right 

might create large intermediate matrices, each taking a 

lot of time to calculate. Matrix multiplication is not 

commutative, but it is associative, so the chain can be 

parenthesized in whatever manner deemed best 

without changing the final product. A standard 

dynamic programming algorithm can be used to 

construct the optimal parenthesization. Note that 

optimizing is over the sizes of the dimensions in the 

chain, not the actual matrices themselves. 

The problem is not actually to perform the 

multiplications, but merely to decide in what order to 

perform the multiplications. For example, if there are 

four matrices A, B, C, and D, there may be: 
((AB)C)D=(AB)(CD)=A((BC)D)=(A(BC))D=A(B(CD))  

However, the order in which the product is 

parenthesized affects the number of simple arithmetic 

operations needed to compute the product, or the 

efficiency. For example, suppose to multiply a 

sequence of matrices with dimensions A(30 × 1),    

B(1 × 40), C(40 × 10) and D(10 x 25). Multiplying an 

X x Y matrix by a Y x Z matrix takes X x Y x Z 

number of multiplications. The number of arithmetic 

operations required for three different 

parenthesizations are: 

((AB)C)D=30x1x40 + 30x40x10 + 30x10x25= 20,700 

(AB)(CD)=30x1x40 + 40x10x25 + 30x40x25= 41,200 

A((BC)D)=1x40x10  + 1x10x25   + 30x1x25 =   1,400 

Clearly the last method is the more efficient. Now that 

the problem is identified, how to determine the 

optimal parenthesization of a product of n matrices? 

One of the way is to go through each possible 

parenthesization (brute force), but this would require 

time O(2
n
), which is very slow and impractical for 

large n. The solution, is to break up the problem into a 

set of related subproblems. By solving subproblems 

one time and reusing these solutions many times, the 

time required is reduced drastically. This is known as 

dynamic programming [1][2]. 

The matrix-chain multiplication problem can be stated 

as follows: given a chain (Al, A2,…,An) of n matrices, 

where for i = 1, 2,…,n, matrix A; has dimension       

pi-l x pi, fully parenthesize the product Al, A2,…,An, in 

a way that minimizes the number of scalar 

multiplications. Note that in the matrix-chain 

multiplication problem, matrices are not actually 

multiplied; rather the goal is only to determine an 

order for multiplying matrices that has the lowest cost. 

Typically, the time invested in determining this 

optimal order is more than paid for by the time saved 

later on when actually performing the matrix 

multiplications (such as performing only 1,400 scalar 

multiplications instead of 41,200 multiplications). 

Undermentioned standard pseudocode assumes that 

matrix A; has dimensions pi-1 x pi for i = 1,2,…,n. The 

input is a sequence p = (po, pl,…pn), where     

length[p] = n+1. The procedure uses an auxiliary table    

m[1…n, 1…n] for storing the m[i, j] costs and an 

auxiliary table s[l…n,1…n] that records which index 

of k achieved the optimal cost in computing m[i, j]. 

The table s is used to construct an optimal solution 

[3][4][6]. 
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2   Matrix Parenthesization Algorithm 
n � length[p]-1 {p is an array containing pi-1 to pj 

         and n is number of matrices in chain} 

for i � 1 to n   

   do m[i,j]�0 {Single matrices take 0 multiplications} 

for l � 2 to n   {l is length of chain} 

    do for i � 1 to n – l + 1    {All possible starting                  

               indices for length l} 

     do j � i + l – 1{Ending index of chain of length l} 

                      m[i,j] � INF  {Large value to start to 

              find minimum}  

            for k � i  to j –1 {Try all possible splits of 

              this chain} 

      do q � m[i,k]+m[k+1,j]+ pi-1pkpj  

    {Smaller chains are already computed} 

            if q < m[i,j] {If minimum, then store it} 

     then m[i,j] � q  

               s[i,j] � k  

          return m, s 

Table 1 :     Completed Arrays m and s 

m                  s 

 1 2 3 4   2 3 4 

1 0 224 180 216  1 1 1 1 

2  0 84 120  2  2 3 

3   0 63  3   3 

4    0  4    

Table 1 represents the application of the algorithm for 

four matrices with dimensions 8 x 4, 4 x 7, 7 x 3 and  

3 x 3. Top most right entry represents the optimal 

parenthesizations. Figure 1 represents the 

corresponding dynamic programming formulation for 

finding an optimal matrix parenthesization for this 

chain. A square node in the figure represents the 

optimal cost of multiplying a matrix chain. A circle 

node represents a possible parenthesization. 

 

2.1   Analysis of Implementation of Algorithm 
The results for implementation of algorithm for 

optimal solution to matrix parenthesization problem 

are shown in Table 2 and Figure 2. It is evident that 

there is considerable amount of time reduction 

proportional to the number of matrices and the 

sequence of dimensions on applying the Matrix 

Parenthesization Algorithm. It also seems that 

percentage of time reduction to the linear left to right 

arithmetic operations is less, if the first dimension is 

smaller. Similarly, if the first dimension is larger, 

percentage of time reduction to the linear left to right 

arithmetic operations is more. It is because of the 

reason that in linear left to right arithmetic 

multiplication, first dimension keeps on multiplying 

with all of the rest of the dimensions. So if the first 

dimension is larger, it gives larger linear left to right 

arithmetic multiplication value. 

            Reductions of Arithmetic Operations
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Figure 2:Reductions of Operations in Optimal Solution 

No. of Matrices:1-24, Sequence of Dimensions:1-100 

 
Figure 1:   Optimal Matrix Parenthesization for a Chain of Four Matrices 
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Table 2: Implementation of Matrix Parenthesization Algorithm 

 No. of Matrices:  1-24, Sequence of Dimensions:  1-100 

  No. of 

Matrices 
Sequence of Dimensions 

Optimal 

Arithmetic 

Multiplica-

tions 

Left to 

Right 

Multiplica-

tions 

Optimal 

Parenthesizations 

%age 

Reduction 

of Time 

(d-c)/d*100 

a b c d e f 

3 9,95,21,78 32697 32697 (AB)C 0 

6 30,10,71,58,9,25,22 56982 183750 A((B(CD))(EF)) 69 

9 94,67,56,17,80,68,10,78,7,5 98220 1273230 A(B(C(D(E(F((GH)I)))))) 92 

12 42,54,49,22,62,46,93,97,82,

59,24,86,56 

970214 1777734 ((A(BC))((((((DE)F)G)H)I

)J))(KL) 

45 

15 27,98,89,40,36,82,6,11,3,23,

15,91,87,35,3,43 

101322 816480 (A(B(C(D(E(F((GH)((IJ)(

K(L(MN)))))))))))O 

88 

18 94,30,63,79,52,10,6,13,93,9

7,3,8,67,40,38,6,89,61,71 

139845 3518984 (A(B(C(D(E(F(G(H(IJ))))

)))))(((((((KL)M)N)O)P)Q

)R) 

96 

21 57,92,76,77,28,13,47,27,3,6

7,89,14,93,16,24,34,14,83,8

9,92,33,19 

166938 2827257 (A(B(C(D(E(F(GH)))))))((

((((((((((IJ)K)L)M)N)O)P)

Q)R)S)T)U) 

94 

24 79,68,62,22,98,35,62,99,21,

39,91,79,81,31,11,4,87,90,9

0,72,57,92,36,72,59 

377216 6688377 (A(B(C(D(E(F(G(H(I(J(K

(L(M(NO))))))))))))))((((((

((PQ)R)S)T)U)V)W)X) 

94 

 

 3   Parallelization 
Refer to the time required to find an optimal 

product sequence for a chain of matrices as the 

ordering time and the time required to execute the 

product sequence as the evaluation time [7]. Many 

parallel algorithms aimed at reducing the evaluation 

time have been studied.  Sascha Hunold proposed 

“Multilevel Hierarchical Matrix Multiplication on 

Clusters” [8]. Manojkumar Krishnan proposed 

“Memory Efficient Parallel Matrix Multiplication 

Operation for Irregular Problems” [9] and Qingshan 

Luo gives “A Scalable Parallel Strassen’s Matrix 

Multiplication Algorithm for Distributed Memory 

Computers” [10].  Any of the mentioned approach 

to reduce evaluation time can be used along with 

the parallel algorithm aimed at reducing the 

ordering time.  Some of the parallel algorithms to 

reduce ordering time have been studied using the 

dynamic programming method and the convex 

polygon triangulation method [11] [12], however 

the research is scarce. Figure 3 shows the filling of 

m and s table diagonally for optimal matrix 

parenthesization problem using pn processors, 

proposed by Grama and Gupta [5]. One of the 

major drawbacks of the approach is that it requires 

number of processors equal to the number of 

matrices, difficult to fulfil in most of the cases. 

Moreover, the processors do not share the uniform 

work load. Although Strate [13] introduced an 

important idea with clue that the goal should always 

be to minimize the idle time of all the processors, 

but not exploited in the mentioned approach. 

3.1   Parallel Processing Algorithm 
Table 3 shows the same Table 1 with the sequence 

of calculations. The sequential algorithm begins by 

solving  all  subproblems of length  two matrices.  

 
Figure 3:   Using pn Processors Proposed by     

       Grama and Gupta 
 

Table 3 :    Sequence of Calculations of Array m 

 1 2 3 4  

1 0 224 180 216  

2  0 84 120 Diagonal 3 

3   0 63 Diagonal 2 

4    0 Diagonal 1 
 

That is, the cost of multiplying matrices A1A2, 

A2A3, and A3A4 are determined. The cost is 224, 84 
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and 63 respectively. These values are entered in the 

above table along the first main diagonal with 

sequence of top to bottom and left to right. The next 

diagonal, entries A1A3 and A2A4 are calculated 

based on the previous results. The process 

continues until finally the A1A4 entry in the table is 

determined. This is the optimal solution. The 

sequential algorithm solves all subproblems on the 

main diagonal of the table, followed by each of the 

upper diagonals until a solution is determined in the 

upper right comer of the table. Under mentioned 

parallel algorithm for allocating tasks for the 

optimal solution to matrix parenthesization problem 

views the table as shown in Figure 4. 
 

TASKING PROCESSORS (P) 

t  �  (n*n)-n)/2        {Total calculations for n matrices} 

trcountbottom(m) � 1    {Temp row count from bottom} 

trcounttop(m) � n-1    {Temporary row count from top} 

p � number of processors  {Total number of processors} 

Avcalc � t/p  {Average calculations for each processor} 

for m � 0 to p-1              {For all processors} 

      tcalc(m) � 0        {Temporary calculations for p(m)} 

      while calcp(m)<Avcalc      {calcs for each processor} 

     do  calcp(m) � tcalcp(m){Calcs for p(m)} 

           tcalcp(m) � tcalcp(m) + trcountbottom 

rcountbottom(m) � trcountbottom(m)   

{Row count from bottom} 

rcounttop(m) � trcounttop(m)      

{Row count from top} 

      trcountbottom(m) ++ 

       trcounttop(m) - -        

      End while 

      return rcounttop(m),calcp(m) 

End for  

 

 

3.2   Functioning of Parallel Algorithm 
p(0), p(1), p(2)……p(n) are the processors which 

are numbered from bottom to top. The rows are 

allocated numbers from top to bottom as i and also 

bottom to top i.e. matching to processors p(0) to 

p(n). Processor 1 will calculate the bottom set of 

rows in the table, processor 2 will calculate the next 

set of rows, until processor n calculates the topmost 

set of rows. In this arrangement processor n will 

finally determine the solution.  

Each processor simultaneously calculates the 

entries in the portion of the table it is assigned. The 

entries in the table are processed diagonally left to 

right, top to bottom. This is almost same to the 

traditional sequential algorithm. Each time 

processor i, (i = 0...n), completes an entire diagonal, 

the entries is sent to processor i+1. Furthermore, 

each time processor i, begins to work on a new 

diagonal, it receives entries for the same column 

previously calculated from processor i - 1. Figure 4 

illustrates these principles.  In this example N=26 

matrices, and n=4 processors. The numbers in the 

table entries represent the order in which they are 

calculated. Each processor has the same order. The 

x entries indicate calculated table entries. 

The goal is to keep a processor busy, while at the 

same time minimizing the idle time of the other 

processors. Several factors must be taken into 

consideration [13]. Notice calculating each table 

entry by processor i requires more CPU time than 

calculating a table entry by processor i-1. This is 

because all previously calculated column entries 

from higher numbered processors must be 

considered. In considering all these factors the table 

should be partitioned in such a manner that, for a 

given problem, there should be proper load balance. 

In the above mentioned algorithm total number of 

calculations are ((n*n)-n)/2. Parallel processing 

algorithms for optimal solution to matrix 

parenthesization problem are mentioned below. 

First algorithm is used for processor p(0). Second 

algorithm is used for all other processors p(i). 

Major changes from the standard matrix 

parenthesization algorithm are underlined.  
 

PARALLEL MATRIX PARENTHESIZATION(P(0)) 
n � length[P]-1{p is an array containing pi-1 to pj and n 

  is the number of matrices in chain } 

for i � 1 to n   

     do m[i,j] � 0{Single matrices take 0 multiplications} 

for l � 2 to n-rcounttop(1) {l is length of chain starting 

              from top of the processor p(o)} 

do for i � rcounttop(1)+1 to n–l+1 {All possible  

   starting indices for length l} 

     do j � i + l – 1{Ending index of chain of length l} 

     m[i,j] � INF  {Large value to start to find minimum}  

     for k � i  to j   {Try all possible splits of this chain} 

     do q � m[i,k]+m[k+1,j]+ pi-1pkpj               

     {Smaller chains are already computed} 

      if q < m[i,j]         {If minimum, then store it} 

     then m[i,j] � q  

               s[i,j] � k  

          return m, s 
 

PARALLEL MATRIX PARENTHESIZATION(P(i)) 
for l � 2 to n-rcounttop(m+1) {l is length of chain  

      starting from top of the processor p(m)} 

 if l < (n – rcounttop(m))+2   then ilimit = rcounttop(m) 

       else    ilimit  =  n-l+1 

      for i = rcounttop(m+1)+1 to ilimit  

          do j � i + l – 1{Ending index of chain of length l} 

              m[i,j] � INF   {Large value to start to find min}  

  for k � i  to j   {Try all possible splits of chain} 

     do q � m[i,k]+m[k+1,j]+ pi-1pkpj  

      {Smaller chains are already computed} 

      if q < m[i,j]         {If minimum, then store it} 

     then m[i,j] � q  

              s[i,j] � k  

return m, s 
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j 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Processors/  
Rows from Bottom 

1 0 1 5 9 x x x x x x x x x x x x x x x x x x x x x x 25 

2  0 2 6 10 x x x x x x x x x x x x x x x x x x x x x 24          P(3) 

3   0 3 7 x x x x x x x x x x x x x x x x x x x x x 23 

4    0 4 8 x x x x x x x x x x x x x x x x x x x x 22             

5     0 1 5 9 x x x x x x x x x x x x x x x x x x 21 

6      0 2 6 10 x x x x x x x x x x x x x x x x x 20           

P(2) 7       0 3 7 x x x x x x x x x x x x x x x x x 19 

8        0 4 8 x x x x x x x x x x x x x x x x 18 

9         0 1 6 x x x x x x x x x x x x x x x 17 

10          0 2 7 x x x x x x x x x x x x x x 16 

11           0 3 8 x x x x x x x x x x x x x 15           

P(1) 12            0 4 9 x x x x x x x x x x x x 14 

13             0 5 x x x x x x x x x x x x 13 

14              0 1 13 x x x x x x x x x x 12 

15               0 2 14 x x x x x x x x x 11 

16                0 3 15 x x x x x x x x 10 

17                 0 4 16 x x x x x x x 9 

18                  0 5 x x x x x x x 8 

19                   0 6 x x x x x x 7             

P(0) 20                    0 7 x x x x x 6 

21                     0 8 x x x x 5 

22                      0 9 x x x 4 

23                       0 10 x x 3 

24                        0 11 x 2 

25                         0 12 1 

26                          0  

Figure 4:    Sequences of Calculations and Partitioning of Tasks into Rows 

       No. of Matrices:  26,  No. of Processors:  4 

 

3.3    Implementation of Parallel Algorithm 
The results for implementation of parallel algorithm 

for optimal solution to matrix parenthesization 

problem are shown in Table 4. In the Table 4, number 

of matrices are 20 – 100 with number of processors    

1 – 10. Figure 5 includes the graph showing reduction 

of computations in the parallel algorithm as compared 

to single processor with different numbers of 

processors. Input includes number of matrices, 

number of processors and the dimensions of each 

matrix. The column of matrix A must be equal to the 

row of matrix B for all the dimensions. 

 

 

3.4    Analysis of Parallel Processing Algorithm 
Analyzing Table 4 with graph of Figure 5, it is 

obvious that there is considerable amount of time 

reduction proportional to the number of processors at 

the start. However, after some increase it is just the 

increase of processors without any gain. One should 

be mindful of that number and may call it a saturation 

point  for  that  input. After  that  point  adding    more 

 

Table 4:  

Implementation of Parallel Processing Algorithm  

No. of Processors: 1-4, No. of Matrices: 20-100 

 

Maximum Computations 

by any Processor Using 

No. of Processors 

No. of 

Matrices 

Total 

Computations 

with Single 

Processor 2 3 4 6 8 10 
20 190 99 85 54 54 70 70 
30 435 225 159 135 110 110 135 
40 780 402 284 219 185 219 150 
50 1225 630 445 364 322 279 279 
60 1770 909 642 495 444 392 339 
70 2415 1239 875 645 524 462 462 
80 3160 1620 1080 882 745 604 532 
90 4005 2052 1377 1079 845 684 684 

100 4950 2535 1710 1380 945 855 855 

78 calcs 

75 calcs 

78 calcs 

94 calcs 

i
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Figure 5: 

Reductions of Computations in Parallel 

No. of Processors:1-10, No. of Matrices:20-100 
 

processors does not yield any more throughput but 

only increases the overhead and cost. Therefore, the 

number of processors must be used economically to 

get the optimal results.  

For number of matrices between 26 and 104, best 

results are found till number of processors nine. With 

number of matrices 26, best results are received with 

number of processors seven. Therefore, one can say 

that algorithm is best suited for processors 2 to 10 for 

number of matrices till 100. Moreover, the results of 

parallel algorithm confirm the results of single 

processor algorithm. 

 

 

4   Conclusion 
There is substantial amount of reduction in arithmetic 

operations on applying matrix parenthesization 

algorithm proportional to the number of matrices and 

the sequence of dimensions. It also seems that 

percentage of time reduction compared to the linear 

left to right arithmetic operations is less, if the first 

dimension is smaller. Similarly, if the first dimension 

is larger, percentage of time reduction to the linear left 

to right arithmetic operations is more. Time reduction 

varies from 0% to 96%, proportional to the number of 

matrices and the sequence of dimensions. It is also 

learnt that on applying parallel matrix 

parenthesization algorithm, the amount of time 

reduction varies 50% and more, proportional to the 

number of processors at the start, however, after some 

increase, adding more processors does not produce 

any more reduction in time; rather increasing cost and 

effort. 

 

 

References: 

[1] Nikos Drakos, “Introduction to Dynamic 

Programming, Computer Based Learning, 

University of Leeds, Lecture 12, Feb 5, 1996 

[2] Dr. Sanath Jayasena, “Dynamic Programming 

Algorithms, CS222, Lecture 11, University of 

Moratuwa, November 2003 

[3] Thomas H. Cormen, Charles E. Leiserson, 

Ronald L. Rivest, Clifford Stein, 

“Introduction to Algorithms, The MIT Press, 

Cambridge, Massachusett London, England, 

McGraw-Hill Book Company, Boston Burr 

Ridge, IL Dubuque, IA Madison, WI, New 

York San Francisco St. Louis Montreal 

Toronto, 2004 

[4] “Fundamental Data Structures and 

Techniques”, Dynamic Graphics Project 

(dgp), Department of Computer Science, 

University of Toronto, CSC 270, Fall 2002  

[5] Ananth Grama, Anshul Gupta, George 

Karypis and Vipin Kumar, “Introduction to 

Parallel Computing, Addison Wesley, 2003 

[6] Dr. Harry Hochheiser , “The Design and 

Analysis of Algorithms, COSC 483, Lecture 

10, Department of Computer and Information 

Sciences Towson University, 8000 York 

Road, Towson, Maryland, Fall 2006 

[7] Heejo Lee, Jong Kim, Sung Je Hong, and 

Sunggu Lee, “Processor Allocation and Task 

Scheduling of Matrix Chain Products on 

Parallel Systems”, 2003 

[8] Sascha Hunold, Thomas Rauber and Gudula 

Runger, “Multilevel Hierarchical Matrix 

Multiplication on Clusters”, ICS 04, Saint 

Malo, France,  Jun 2004  

[9] Manojkumar Krishnan, Jarek Nieplocha, 

“Memory Efficient Parallel Matrix 

Multiplication Operation for Irregular 

Problems”, Pacific Northwest National 

Laboratory, Richland, ACM, CF 06, Ischia, 

Italy, May 2006  

[10] Qingshan Luo and John B. Drake, “A 

Scalable Parallel Strassen’s Matrix 

Multiplication Algorithm for Distributed 

Memory Computers”, The University of 

South, ACM 0-89791-658-1, 1995 

[11] P.G. Bradford, G.J. Rawlins, and G.E. 

Shannon, “Efficient Matrix Chain Ordering in 

Polylog Time”, SIAM J. Computing, vol. 27, 

no. 2, pp.466-490, 1998 

[12] A. Czumaj, “Parallel Algorithm for the Matrix 

Chain Product and the Optimal Triangulation 

Problems”, Research Paper in Institute of 

Informatics, Warsaw University,  ul Banacha, 

Warszawa, Poland, 1993 

[13] Steve A. Strate and Roger L. Wainwright, 

“Parallelization of the Dynamic Programming 

Algorithm for the Matrix Chain Product on a 

Hypercube”, The University of Tulsa, 1990 

1 Processor 

 

 

 

 

2 Processors 

 

3 Processors 

4 Processors 
6 Processors 
8 Processors 
10 Processors 

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007      240


