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Abstract: The paper focuses on the fuzzy extensions of two data analysis methods, namely the fuzzy cluster analysis 

and the fuzzy interpolation of spatial data (the so-called fuzzy kriging) and their suitability for ecological applications. 

Both extensions utilize exact (crisp) measurement data as well as imprecise data defined as fuzzy numbers or fuzzy 

vectors. Fuzzy clustering of fuzzy data (conical fuzzy vectors) and fuzzy kriging methods are useful tools with a 

potential of utilizing vast pieces of information available as inexact or uncertain data. We have to deal with such data in 

many ecological applications. The paper presents an example of the analysis of ecological data and two fuzzy data 

analysis systems developed at the University of Kiel. 
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1 Uncertainty and Heterogeneity of 

Ecological Data 
Besides the usual problem of searching for effective 

methods for data analysis there is a further difficulty 

with the analysis of ecological data caused by the 

uncertainty and heterogeneity of these data. Ecologists 

collect and evaluate data from all possible data sources, 

sources of objective (mostly quantitative) data, like 

measurements and simulation results, and sources of 

subjective (often only qualitative) information, like 

subjective estimations obtained from an expert. Not all 

ecological parameters are measurable, for example the 

number and biomass of fish in a particular lake. 

    The uncertainty and heterogeneity problems in 

ecological data analysis result from:  

- presence of random variables, 

- incomplete or inaccurate data, 

- approximate estimations instead of 

measurements, 

- incomparability of data (varying measurement or 

observation conditions), 

- imprecise qualitative instead of quantitative data, 

- subjectivity of the information obtained from 

expert, and 

- heterogeneous data sources. 

     The requirements for the methods of ecological data 

analysis arise from these properties. Thus, special 

methods should be used to handle imprecision, 

uncertainty and heterogeneity of environmental data. 

Conventional data analysis methods based on Boolean 

logic often ignore the continuous nature of ecological 

parameters and the uncertainty of ecological data. That 

can result in misclassification or misinterpretation of the 

data structure. Fuzzy representation and interpretation of 

data structure is a very natural and intuitively plausible 

way to formulate and to solve some uncertainty 

problems in ecological data analysis but in a different 

way as the probabilistic approach. Ecological data or 

classes of ecological objects can be defined as fuzzy sets 

with no sharply formed boundaries, which is a more 

realistic reflection of the continuous nature of ecological 

parameters. 

 

 

2   Fuzzy Classification and Spatial Data 

Analysis  
Classification and geostatistic belong to the main 

problems of ecological data analysis. Fuzzy clustering 

methods can be applied for fuzzy classification which 

means the partition of objects into classes with not 

sharply formed boundaries. The usual sharp cluster 

analysis, which definitely places an object within only 

one cluster, is not particularly useful for data of high 

uncertainty. With fuzzy clustering it is no longer 

essential to definitely place an object within one cluster, 

since the membership value of this object can be split up 

between different clusters. This enable us a better 

interpretation of data structure. We can find many 

applications of fuzzy clustering in different topics of 

ecology, e.g. Zang applies the fuzzy approach to the 

classification of ecological habitats [14] and Pedersen to 

examine the floristic and environmental similarity 

among reaches [12].  

    The common fuzzy clustering methods, like the fuzzy 

c-means method, work only with crisp data. In ecology 

we have often to deal with data with a semblance of 
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accuracy. In such cases the extension of the fuzzy c-

means method for fuzzy data can be very helpful for the 

classification of imprecise ecological data. This 

extension was a basis for the development of the Fuzzy 

Clustering System EcoFucs v. 5.1 at the University of 

Kiel [9]. The cluster analysis of ecotoxicological data 

presented in this paper is used to illustrate the extension 

of the fuzzy c-means method for fuzzy data. 

    Spatial data is an essential part of ecological data. A 

fuzzy approach can be very useful for spatial data 

analysis when probabilistic approaches are inappropriate 

or impossible, e.g. for the classification of topo-climatic 

data [6] or for the land use mapping [10]. Fuzzy 

classification is now widely accepted in remote sensing 

of spatial data [11]. 

    The fuzzy extension of the most popular interpolation 

procedure for spatial data, the so-called fuzzy kriging, is 

presented in this paper as an example of a fuzzy 

approach to spatial data analysis. The fuzzy kriging 

procedure can be used for the regionalization of 

ecological parameters. The implementation of the fuzzy 

kriging method is a part of the Fuzzy Kriging and 

Evaluation System FUZZEKS developed at the 

University of Kiel [3]. FUZZEKS utilizes exact (crisp) 

measurement data as well as imprecise estimates defined 

as fuzzy numbers and can be very useful for the analysis 

of spatial data in the case if an application of the 

conventional kriging method is restricted owing to 

insufficient amount of exact (crisp) data.  

    Fuzzy classification and fuzzy regionalization were 

used in this paper as an example of the suitability of a 

fuzzy approach to ecological data analysis. 

 

 

3   Fuzzy Classification of Fuzzy Data 
The fuzzy cluster analysis is a method of partitioning the 

n-dimensional space into clusters with not sharply 

formed boundaries. But the problem is, that the most 

common clustering methods, like the fuzzy c-means 

method by Bezdek [4], are only designed for treating 

crisp data, that means they provide the fuzzy partition 

only for crisp data (e.g. exact measurement data). 

Ecological data are often presented with a semblance of 

accuracy when exact values cannot be ascertained. Such 

problems naturally arise in applications when data are 

imprecise and information is not available about 

distributions of variances which describe data 

inaccuracy. In such cases it may only be possible to 

obtain estimates of data scatter which can be treated in 

the context of fuzzy sets and used for defining fuzzy data 

in the form of fuzzy vectors in a high dimension [7]. 

Yang defined the distance between two so-called conical 

fuzzy vectors A
~

andC
~

 as follows [13]: 
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The panderance matrix of the conical fuzzy vector 

describes the accuracy of data. This matrix contains 

spreads of data on its diagonal. 

    Yang proofed that ( )CAd c

~
,

~
 defined above is a 

complete metric, which is an assumption of the 

convergence of the fuzzy c-means clustering procedure 

by Bezdek. That means, we can define the well known 

objective function of the fuzzy c-means procedure for 

conical fuzzy vectors by 
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where iA
~

is the ith object and jC
~

is the jth cluster, both 

defined as conical fuzzy vectors. 

    The clustering algorithm for conical vectors proposed 

by Yang has been extended for the diagonal norm using 

the so-called z-transformation of the Euclidian norm and 

implemented for the Fuzzy Clustering System EcoFucs 

v.5.1. The diagonal norm is a highly recommendable 

distance measure in the case of heterogeneous ecological 

data with different domain scales. In such cases we can 

transform data in a uniform manner before we start the 

fuzzy c-means procedure for conical vectors [9]: 

   z-trans( iA
~

) = 
S

MAi
~

~~
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   (3) 

where:  

  ∑
=

=
n

i

iA
n

M
1

~1~
 is the mean vector of all fuzzy conical  

  vectors iA
~

of the input data set, and 

  S
~

is the vector of spreads from the  panderance matrix. 

    To obtain back the coordinates of the cluster centers in 

the real scale we have to proceed the inverse 

transformation of the results of the fuzzy c-means 

procedure. EcoFucs offers four distance norms as a 

measure of similarity between the object and the 

respective clusters (the euclidean-, diagonal-, 

mahalonobis- and the L1-norm) for crisp data and the 

euclidean and diagonal norms for fuzzy vectors. This 

system offers also a set of methods for calculating the 

start partition (WARD, conventional c-means, 

maximum-distance-algorithm, sharp or fuzzy random 

partitions). The choice of the distance norm depends on 

the data set. The partition efficiency indicators available 

in EcoFucs (entropy, partition coefficient, payoff and 
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non-fuzziness index) can be very helpful in searching for 

the optimal partition. 

 

3.1    An application example: A fuzzy cluster 

analysis of chemicals according to their 

ecotoxicological properties. 
The fuzzy cluster analysis of chemicals according to 

their ecotoxicological properties has been used to check 

and illustrate the suitability of the fuzzy clustering 

procedure based on conical fuzzy vectors and to compare 

this extension with the fuzzy clustering procedure for 

crisp data. The example presented in this paper is 

particularly useful for this comparison because of the 

high uncertainty of ecotoxicological data. The 

uncertainty of these data arises from imprecision, a 

difficult comparability and a mixture of quantitative and 

qualitative data. In comparison to the conventional 

"sharp" clustering methods both fuzzy clustering 

techniques (for crisp and fuzzy data) are more 

appropriate to handle data of high uncertainty. 

    The data set for this example is derived from the 

reports of the Advisory Committee on Existing 

Chemicals of Environmental Relevance which selected 

and evaluated existing chemicals according to their 

environmental relevance [5]. Data shown in Table 3 

(Appendix) is a part of the data set with about two 

hundreds chemicals used in [8] for the fuzzy clustering 

procedure for crisp data. These data can be divided into 

three groups of features relevant to ecotoxicological 

properties: 

- Data relevant for the distribution of a compound 

between different compartments (log POW and 

Henry constant; columns 1 and 2 in the Table 3, 

Appendix), 

- Data representing the potentials for 

biodegradability, hydrolysis and photolysis 

(columns 3 to 5), and 

- Toxicity indicators: toxicity for a) microbes, b) 

aquatic invertebrates, c) aquatic vertebrates, d) 

mammals and a combined indicator term for 

cancerogeneity, mutageneity and teratogeneity 

(columns 6 to 10). 

   Both the costs of ecotoxicological testing procedures 

and the large number of existing chemicals make it 

necessary to select representative chemicals which 

faithfully reflect the relevant properties of possibly a 

major group of compounds. Therefore the main tasks of 

this analysis were to find distinguishable clusters with 

characteristic properties and to find chemicals 

representative for each cluster. The results of clustering 

of crisp data from Table 3 (Appendix) in 5 clusters for 

the diagonal norm are presented in Table 1. 5 clusters 

has been chosen as the "optimal" number of clusters by 

means of the analysis of the partition efficiency 

indicators offered by EcoFucs. The distribution of the 

membership values provides additional information from 

which the degree of similarity between properties of a 

particular chemical and properties characterising 

particular clusters can be deduced. This is particularly 

important since there is a lot of chemicals with more or 

less overlapping properties (see Table 1, the membership 

values with a membership ≥ 0.10 to different clusters are 

underlined) which would not be registered by 

conventional "sharp" clustering methods. 

 

Table 1: The results of clustering of crisp data in 5 

clusters for the diagonal norm (the numbers in bold-face 

show the highest membership values; membership 

values with a membership ≥ 0.10 to different clusters are 

underlined). 

        Membership degrees to clusters: 
 1 2 3 4 5 

    Cluster 1  

Dichlorobenzene 0,97 0,03 0,00 0,00 0,00 

Nonylphenol 0,82 0,16 0,01 0,00 0,00 

124-Trichlorobenz. 0,80 0,16 0,02 0,00 0,00 

Ditolylether 0,76 0,11 0,05 0,01 0,05 

Dibutylphthalat 0,64 0,15 0,08 0,03 0,09 

N-Ethylaniline    0,90 0,08 0,00 0,00 0,00 

Chlorotoluidine 0,56 0,33 0,05 0,01 0,03 

4-Nitrophenol 0,71 0,18 0,02 0,01 0,06 

    Cluster 2 

Chloroform 0,06 0,91 0,01 0,00 0,01 

Pentachlorophenol 0,29 0,67 0,01 0,00 0,01 

p-Nitromethoxybenz. 0,01 0,98 0,00 0,00 0,00 

Benzene   0,18 0,55 0,10 0,04 0,11 

o-Chlorotoluol 0,05 0,92 0,00 0,00 0,00 

Nitrobenzene 0,04 0,94 0,00 0,00 0,00 

1,2,4,5-Tetrachlorob. 0,30 0,35 0,16 0,07 0,10 

Triethylentetramine 0,20 0,30 0,18 0,07 0,24 

    Cluster 3 

Diphenylamine 0,20 0,16 0,53 0,06 0,03 

o-Tolidine 0,00 0,00 0,98 0,00 0,00 

o-Dianisidine 0,00 0,00 0,98 0,00 0,00 

3,3Dichlorobenzidine 0,18 0,11 0,60 0,03 0,06 

    Cluster 4 

Trichloromethylben. 0,01  0,01 0,01 0,95 0,01 

Benzoylchloride 0,03 0,03 0,06 0,80 0,06 

    Cluster5 

Diethylenglykoldim. 0,06 0,06 0,21 0,03 0,61 

Hexanedioicacid 0,02 0,02 0,01 0,01 0,92 

Aceticacidanhydride 0,05 0,05 0,02 0,03 0,83 

N,N-Dimethylform. 0,04 0,05 0,13 0,03 0,72 

 

    The classification of chemicals presented in Table 1 is 

very similar to the results in [8]. Four clusters (1, 3, 4 

and 5) have well distinguishable properties. It can be 

recognized by the location of the cluster centers shown 

in Table 4 (Appendix), e.g. cluster 4 is characterized by 

extremely high hydrolysis rates, high photolysis rates 

and high biodegradability. The one cluster, namely the 

cluster 2, contains the "rest" of chemicals with no 

significant common properties. They cannot be 
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definitely classified to one of other clusters with a clear 

characteristic. 

    The next step of this cluster analysis was the 

"fuzzification" of crisp data from the Table 3, that means 

they are defined now as conical fuzzy vectors (an 

example in Table 5, Appendix). The first line of each 

chemical in Table 5 contains the same crisp data, but 

now we interpret them as apexes of conical fuzzy 

vectors. The second line are spreads which illustrate the 

data accuracy for each features. 
 

Table 2. The results of clustering of conical fuzzy 

vectors in 5 clusters for the diagonal norm; the names in 

bold-face show chemicals which changed their location 

from the "rest"-cluster 2 to other clusters.  

         Membership degrees to clusters: 
 1 2 3 4 5 

    Cluster 1 

Dichlorobenzene 0,88 0,06 0,03 0,00 0,03 

Nonylphenol 0,67 0,28 0,02 0,01 0,02 

124-Trichlorobenzene 0,55 0,35 0,05 0,02 0,03 

Ditolylether 0,81 0,08 0,03 0,01 0,05 

Dibutylphthalat 0,75 0,08 0,04 0,03 0,08 

N-Ethylaniline 0,95 0,03 0,00 0,00 0,01 

Chlorotoluidine 0,79 0,09 0,02 0,03 0,06 

4-Nitrophenol 0,58 0,16 0,06 0,04 0,15 

    Cluster 2 

Pentachlorophenol 0,08 0,88 0,02 0,01 0,01 

p-Nitromethoxyben. 0,08  0,88  0,01 0,01 0,02 

o-Chlorotoluol 0,02 0,85 0,01 0,09 0,02 

Nitrobenzene 0,02 0,96 0,01 0,00 0,01 

1,2,4,5-Tetrachlorob. 0,23  0,30 0,17 0,14 0,15 

    Cluster 3 

Diphenylamine 0,32 0,18 0,32 0,09 0,09 

Benzene 0,17 0,22 0,22 0,20 0,19 

o-Tolidine 0,00 0,00 0,99 0,00 0,01 

o-Dianisidine 0,00 0,00 0,99 0,00 0,01 

3,3Dichlorobenzidine 0,20 0,09 0,55 0,06 0,10 

    Cluster 4 

Trichloromethylbenz. 0,01 0,00 0,01 0,97 0,01 

Benzoylchloride 0,12 0,06 0,14 0,37 0,31 

    Cluster5 

Chloroform 0,30 0,24 0,10 0,06 0,30 

Diethylenglykoldim. 0,07 0,03 0,14 0.03 0,73 

Hexanedioicacid 0,04 0,02 0,03 0,02 0,90 

Aceticacidanhydride 0,10 0,04 0,03 0,06 0,77 

N,N-Dimethylform. 0,03 0,01 0,06 0,02 0,87 

Triethylentetramine 0,21 0,16 0,19 0,08 0,36

    

The results of the clustering procedure for conical fuzzy 

vectors show a very similar classification of chemicals to 

the clusters 1, 3, 4 and 5, but the number of compounds 

of the "rest"-cluster 2 is significantly reduced (Table 2). 

These chemicals could not be clearly classified by 

clustering of crisp data. Chloroform and 

Triethylentetramine changed their location to cluster 5 

and Benzene to cluster 3. They all still have a high 

membership degree to cluster 2, but now their 

characteristic properties can be better recognized.  

4   Fuzzy Regionalization 
Fuzzy kriging is an extension of the conventional kriging 

procedure which is usually used for regionalization of 

spatial data [2]. Kriging is a common interpolation 

method which is based on a statistical analysis of spatial 

data. The first step of this analysis is the preparation of 

the so-called experimental variogram following by the 

fitting of the theoretical variogram, which is a basis for 

the interpolation procedure. The application of the 

conventional methods of spatial interpolation is often 

restricted owing to an insufficient amount of data.  If the 

collection of new data is too expensive or impossible, we 

can consider the use of additional imprecise data 

subjectively estimated by an expert. We can use fuzzy 

sets to handle the imprecision and uncertainty of these 

data. In such a case the interpolated value will be a fuzzy 

number if at least one of input values is a fuzzy value 

defined by an expert. 

    The main kriging estimation (4) is a linear 

combination of the input values and can be calculated  

using the extension principle of the fuzzy set theory and 

the α -cut-representation of fuzzy sets [1]: 

   ( ) ( ) ( )∑
=

=
n

i

ii xZxxZ
1

*

αα δ    (4) 

where: 

  ( )αxZ *
 is the α -cut of  the interpolated value ( )xZ *

 

   at the position x, 

  ( )
αixZ are the α -cuts of the input values ( )ixZ , and  

  ( )xiδ  
are the crisp minimizing parameters. 

     The kriging estimation formulated by α -cut-

representation of fuzzy sets (the equation 4) has been 

used for the implementation of the fuzzy kriging 

procedure for the Fuzzy Kriging and Evaluation System 

FUZZEKS developed at the University of Kiel. The 

implemented fuzzy kriging procedure utilizes exact 

(crisp) measurement data as well as imprecise estimates 

obtained from an expert. These imprecise data can be 

defined as fuzzy numbers and taken as additional input 

data for the kriging procedure. 

    Fig. 1 presents the main kriging window of 

FUZZEKS. The system supports a user in an interactive 

fitting of the crisp theoretical variogram to the fuzzy 

experimental variogram (see the small window on the 

left in Fig. 1). The results can be viewed as a map 

(isolines of interpolated values, see the window on the 

right in Fig. 1) or as a fuzzy number at any particular 

point of the area under investigation, or as a distribution 

of the membership function along a section line between 

two given points. Fig. 1 is an illustration which presents 

the results of fuzzy kriging of hydraulic conductivity for 

the data set with 26 crisp measurement points and 3 

estimated values given in the area under investigation. 

The density of small points within the window on the 

right illustrates the degree of fuzziness of the results. 
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    To simplify the preparation of the input data file a 

special ASCII - file format was implemented, combining 

both exact (crisp) and fuzzy data (fuzzy numbers) in one 

unified form. The input data can be also transformed 

(e.g. by a logarithmic function) before the calculation of 

the experimental variogram. 

 

Fig. 1: The kriging window of FUZZEKS. Right 

window: isolines of interpolated values; the density of 

small points illustrates the degree of fuzziness of the 

results. Left window: interactive fitting of the theoretical 

variogram to the experimental variogram. 
 

 

 

 

5   Final Remarks / Conclusions 
The goal of this paper was to illustrate the suitability of a 

fuzzy approach to some problems of ecological data 

analysis. Fuzzy representation and interpretation of data 

structure is a very natural and intuitively plausible way 

to formulate and to solve some uncertainty problems in 

environmental data analysis. 

    A fuzzy partition of ecological objects obtained by 

fuzzy clustering methods presented in this paper reflects 

very well the continuous nature of ecological features. 

The clustering of data in the form of conical fuzzy 

vectors does not force one to describe objects with a 

semblance of accuracy and can be very helpful for the 

analysis of data of high imprecision. The conical fuzzy 

vectors are better suitable to illustrate the overlapping 

properties of classified objects. 

    The analysis of spatial data belongs to the main 

problems of the analysis of ecological data. In the case 

of an insufficient amount of data the extension of the 

data set by additional data subjectively estimated by an 

expert is particularly important. The fuzzy kriging 

procedure utilizes crisp measurement data as well as 

fuzzy data and can be used as a regionalization tool. The 

development of easy-to-use tools (like FUZZEKS or 

EcoFucs) for research or for practical tasks is very 

important for the promotion of fuzzy logic applications 

in ecology. 
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Appendix 

 

Table 3. The crisp data set used as testing data for the fuzzy cluster analysis of chemicals according to 

their ecotoxicological properties. 

Features: 1: log POW    6: toxicity for microbes (score) 

  2: Henry constant  [Pa  m³  mol-1 ]  7: toxicity for aquatic invertebrates (score) 

  3: biodegradability  (score)     8: toxicity for aquatic vertebrates (score) 

  4: degradation in water  [1/ t½] in days  9:mammalian toxicity (score) 

  5: degradation in the air [1/ t½] in days  10:cancerogeneity/mutageneity/teratogeneity (score) 

 
      1   2 3 4    5 6 7 8 9 10 

Chlorotoluidine   2.58 0.1 7 0 8 10 0 3 10 5 

Triethylentetramine ----------  -1.44 0.0 0 0 14.04 20 3 0 10 5 

Chloroform----------------------  1.9 310 3 0 0.0083 10 3 10 3 5 

Pentachlorophenol-------------  3.0 0.04 2 1 1 0 0 0 0 10 

Dichlorobenzene---------------- 3.60 3.1 2 0 0.04 3 3 3 10 10 

p-Nitromethoxybenzene------- 2.03 0.2 2 0 0.196 10 3 3 0 5 

Nonylphenol-------------------- 3.27 136 2 0 0 3 0 0 10 5 

Diphenylamine----------------- 3.62 0.09 2 0 24 3 3 10 10 5 

124-Trichlorobenzene--------- 4.21 1.08 2 0 0.033 0 3 0 10 5 

Ditolylether--------------------- 5.54 15.7 2 0 0 10 3 3 20 15 

Dibutylphthalat----------------- 4.7 0.27 10 0.0003 0.56 10 3 0 20 5 

Benzene-------------------------- 2.1 440 10 0 0.077 10 10 3 0 0 

o-Tolidine------------------------2.4 0.00 3 0.33 12 3 20 20 10       0 

o-Dianisidine-------------------- 2.0 0.00 2 0 12 3 20 20 10 0 

3,3Dichlorobenzidine---------- 3.55 0.00 0 0 12 10 20 0 20 0 

o-Chlorotoluol------------------ 3.45 970 0 0 0.18 10 3 3 0 5 

N-Ethylaniline------------------ 3.0 5.0 3 0 0.003 10 3 3 10 10 

Nitrobenzene------------------- 1.6 2.4 3 0.04 0.014 3 3 3 0 5 

Diethylenglykoldimethyleth. -0.36 0.04 2 0 1 20 20 20 20 5 

Hexanedioicacid--------------- 0.08 0.10 10 0 0.227 20 20 10 10 20 

Aceticacidanhydride---------- -0.2 0.0 10 232 0.045 20 3 10 10     15 

Trichloromethylbenzene----- 2.92 39.2 10 655 20 10 3 20 3 0 

Benzoylchloride--------------- 0.0 0.0 10 400 20 10 20 3 10 5 

4-Nitrophenol------------------ 1.9 0.00 7 0 0.143 3 3 3 10 15 

N,N-Dimethylformamide----- -1.01 0.00 10 0 0.25 10 20 20 10 5 

1,2,4,5-Tetrachlorobenzene-- 4.6 15290 2 0.02 0.0065 3 3 3 3 5 

 

 

Table 4. The coordinates of the cluster centers obtained by clustering of crisp data from the Table 3 in 5 

clusters. 
 

cluster.1: 03,571 551,764 03,618 07,945 01,636 05,754 02,628 01,999 10,864 08,829  

cluster 2: 02,499 885,509 02,853 07,670 01,499 07,395 03,168 03,600 02,230 05,793  

cluster.3: 02,436 332,654 02,304 03,103 12,417 05,283 16,664 14,377 11,571 01,306  

cluster 4: 01,651 216,638 09,607 508,186 19,164 10,029 10,304 12,011 06,306 02,448  

cluster 5: -00,151 169,385 08,101 60,164 01,122 17,224 14,347 12,785 11,542 11,866  

 

 

Table 5. An example of conical fuzzy vectors defined for the first two chemicals from the crisp data from 

the Table 3. The first line of each chemical contains the apexes and the second line determinates the 

spreads of each feature. 
Chlorotoluidine ----------   2.58 0.1 7 0 8 10 0 3 10 5

   0.01 0.01 2 0.01 0.01 5 0.01 2 5 5 

Triethylentetramine------  -1.44 0 0 0 14.04 20 3 10 10 5

   0.01 0.01 0.01 0.01 0.01 5 2 5 5 5 
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