
Non-Linear System State Analysis  

via Takagi-Sugeno Fuzzy Modelling  
 

MIROSLAV POKORNÝ, PAVEL FOJTÍK 
Faculty of Electrical Engineering and Computer Science 

 VSB – Technical University Ostrava 
 17. listopadu 15, 708 33 Ostrava,  

 CZECH REPUBLIC  
miroslav.pokorny@vsb.cz, pavel.fojtik@vsb.cz 

 
Abstract: - The fuzzy and neuro-fuzzy modeling approaches represent extremely powerful tool for non-linear dynamic 
systems approximation. By using this tool it is possible to overcome difficulties in conventional techniques for dealing 
with nonlinearity. This paper presents the design of the diagnostic system exploits these fuzzy modeling approximation 
abilities together with fault detection and isolation algorithm (FDI) to detect the presence of the fault at the system. The 
idea is based on using a Takagi-Sugeno fuzzy model to describe the non-linear dynamic system by its decomposition 
onto number of linear submodels. Having these submodels, the Kalman filters are designed for each of the local models 
to generate the fault indicating signals – residuals. Because of the assumption that the non-linear system under 
consideration is stochastic, the hypothesis testing technique (Generalized likelihood ratio test) is applied to the 
residuals along with the fuzzy regression to make a decision whether the system is subjected by the fault or not. The 
paper also provides the application study of the proposed approach using the three tank system example. 
 
Key-Words: - Fault, fault diagnosis, residual signals, state space model, nonlinear system, fuzzy nonlinear regression 
model, linear subsystem, state observer, Kalman filter, hypothesis testing, generalized likelihood ratio 
 

1   Introduction 
With the growing complexity of modern engineering 
systems and the ever increasing demand for safety of 
these systems, there has been effort to develop new 
control and supervision techniques. Modern systems are 
large scale, highly complex, and operate with a large 
number of variables under closed-loop control. To 
ensure safety and product quality level the design of the 
fault compensating system seems to be sufficient. In this 
case the fault is defined as an unpermitted deviation of at 
least one characteristic property or variable of the 
system. Early and accurate detection and diagnosis of the 
faults can minimize downtime and increase safety of the 
monitored system. To tackle a fault diagnosis problem, it 
is very useful to have all the knowledge concerning a 
system behavior. Such the knowledge can be represented 
by the adequate model of the monitored system. Most 
model-based methods for fault diagnostics rely on a 
linear state-space model and since the most of industrial 
systems exhibit a non-linear behavior, only way to 
obtain this linear model is to linearise the process model 
around the operating point. However, linearization does 
not provide a good model for the strong non-linear 
system. Another way to handle the fault diagnosis in 
non-lineal system is to design a non-linear observer. But 
the systems that can be represented by these observers 
are limited to a few standard types of non-linearity. It 
follows from the above, that it is very profitable to use 
the fuzzy modeling approximation abilities to overcome 

difficulties in conventional techniques for dealing with 
nonlinearity.  
     This paper presents the fault diagnostics scheme 
using Takagi-Sugeno fuzzy model together with the 
Kalman filters as the observers generate the fault 
indicating signals – residuals. To make a decision 
whether the system is subjected by the fault the 
generalized likelihood ratio test is applied to the 
residuals.  
     The paper is organized as follows. Section 2 
describes the Takagi-Sugeno fuzzy model structure that 
is essential for the fault diagnosis task. Section 3 
presents method for residual signals generation using the 
bank of Kalman filters and subsequently decision 
algorithm based on the generalized likelihood ratio test. 
Application of the proposed fault diagnostic scheme for 
a three tank system is presented in Section 4. 
 

 

2   Structure of TS fuzzy model 
A Takagi-Sugeno fuzzy model is a way to describe a 
non-linear dynamic system using locally linearized 
linear models. Each linear model represents the local 
system behavior around the operating point. The global 
system is described by a fuzzy fusion of all linear model 
outputs. Necessary number of fuzzy IF-THEN rules 
describes the global system behavior. The consequent of 
and particular rule represents local linear relations of the 
non-linear system. 
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     Suppose that the non-linear system can be described 
by the following general n – dimensional non-linear 
function: 

)x xF(xy n ,,, K21= , (1) 

where y is output of the system and x1, x2,…, xn are input 
variables. Since function (1) can be approximated by the 
piecewise liner function, it is possible to describe this 
non-linear function by the set of the fuzzy IF-THEN 
rules. The local input subspace, where the particular 
consequent holds true, is enclosed by the rth antecedent 
of the specific rth rule (r = 1,2,…,R). TS model which 
approximated the non-linear function (1) has the 
following structure: 

 
where x1, x2,…, xn are premise variables A11, A12,…, ARn 
are fuzzy sets and R is number of IF-THEN rules. The 
consequents in (2) take the form of linear functions of 
input variables.  
     Given the inputs, the global output of the system is 
inferred as follows: 
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where wr is the tensor product of grade memberships of 
the premise variables: 
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µAri (xi

0) is the grade of membership of the premise 
variable actual value xi

0. The membership grade 
functions wr (r = 1,2,…,R) satisfy the following 
constraints: 
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     Since the monitored system is supposed to be 
stochastic, to obtain the diagnostic signal – residual that 
are computed as a difference between the estimated and 

real system output, the Kalman filter can be used for 
construction of the output system estimate. In order to 
compute this global estimate it is convenient to apply the 
Kalman filter not to the global system, but to the local 
linear model appeared in the consequent of each of the 
rule. To do so, it is necessary to convert the linear 
regression functions to the corresponding state space 
representation. 
     It is possible to show, that if the regression equation 
which describe the local system behavior is given by: 
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where yr(k) is the output of the local linear model, r
a0 , 

r

ja , r

jb , r

jc  are the scalar coefficients, u1(k),…,uS(k) are 

the input variables and zy , Szuzu K1  represents the 

order of delays for the corresponding signals, the state 
space matrices for the particular local model can be 
obtained in the following observable canonical form: 
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and the consequent linear models take the form of the 
MISO state space equations given by: 
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where zyr k R)( ∈1x  is the state vector, R)( ∈ky r
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output of the local system, 1R)( +∈ Sku  is the input 

vector and r

1Φ , r

1Γ , r

1C  and r

1D  are system matrices 
with appropriate dimensions. 
     For the MIMO systems it is necessary to obtain the 
corresponding state space equations (8) for the each of 
existing output.  
     The final state space form of the rth consequent linear 
model can be expressed as: 
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where mr k R)(M ∈y  is now output vector of the local 
system. System matrices are given by: 
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Output vector of the global model can be computed 
using (3) and hence: 
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where the membership grade functions wr (r = 1,2,…,R) 
are obtained using: 
 

[ ]))((min
,

kw r
jSAr Uµ=  (12) 

 
where ))(,),(,),(),(()( jkukukukuk SS −−= KK111U . 

In this case, the all rules consequents of the TS model 
take the form of the state space equations. Therefore it is 
possible to design the Kalman filter for each of the 
submodels. 
 
 

3   Residual generation and evaluation 
In order to design a residual generator based on the bank 
of the Kalman filters, assume that the state space 
representation of the local models with the possible fault 
can be expressed as follows: 
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where: 

)()()( MMM kkk rrr uDyy −=  (14) 
 
f(k) is unknown function of time corresponds to a 

specific fault while r

1R  and r

2R  are the known fault 
distribution matrices represents the effect of the faults on 

the system. )(krw  and )(krv  are supposed to be 
independent zero-mean white noise sequences with 

covariance matrices rQ  a rR , assumed to be known. 
Assume fault free case. To compute the state vector 
estimate of the stochastic system, the Kalman filter with 
the following structure is proposed: 
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where )1(ˆ M −kk
r

x  is state estimate extrapolation. 

)(f krK  is the Kalman gain matrix and it is designed to 
achieve minimum variance estimation. To do so, Kalman 
gain matrix should be determined by: 
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where )1( −kk
r

P  is a priory estimation error 

covariance matrix and it is a function of its last a 
posteriori value. A posteriori estimation error covariance 
matrix is given by: 
 

)()()( Mf 11 −−−= kkkkkk rrrrr PCKPP  (17) 

 
Local outputs estimation can be computed using the 
following expression: 
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and the global system estimation is evaluated according 
to (11): 
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     Residual vector takes the form: 
 

)()(ˆ)()( M kkkk γyyr =−=  (20) 
 
which is the global innovation process and can be 

computed form the local ones )(kr
γ  using (11). Since 

the innovations )(,),(),( 01 γγγ K−kk  are statistically 
independent of one another, generalized likelihood ratio 
test can be performed to decide if a fault has occurred. 
The hypotheses test can be expressed in terms of the 
innovation: 
 

:H 0 )()( kk 0γγ =  (21) 

:H1 ),()()( fkkkk ργγ += 0  (22) 

 
Here )(k0γ  is the innovation in the absence of the fault, 

and ),( fkkρ  is additive fault signature, which can be 

recursively computed [.]. fk  is the unknown time at 
which the fault occurs. Provided that innovation has the 
Gaussian distribution the generalized likelihood ratio for 
hypothesis (21) and (22) takes the form [.]: 
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where ),( fkkd  is a least square estimate of the fault 

magnitude vector f  and ),( fkkS  is the error covariance 

of estimate of f . ),( fkkd  and ),( fkkS  are obtained 
from the following expressions: 
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where ),( fkkrd , ),( fkkrS  can be computed 
recursively [.] and wr are corresponding membership 
grade functions.  
     To make a decision whether the fault has occurred, it 
is necessary to compare (23) to a properly chosen 

threshold. But for reduction of memory and computation 
amount requirements it is convenient to make the 
comparison at each time k inside a finite data window. 
Threshold selection is a tradeoff between the false alarm 
rate and the detection time. 
 
 

4   Experimental results 
A laboratory three tank system model is used here to 
demonstrate functionality of the proposed fault diagnosis 
scheme. The 3 tank system shown in Fig.1 is a non-
linear system consisting of 3 tanks of circular cross-
section that are connected to each other through 
connecting pipes of circular cross-section. 

 

 

 

 

 

 

 

 

 

 
Fig. 1 Three tank system scheme 

 
There are two inputs to the system – the incoming flows 

)(tQ1  and )(tQ2 . Assume that water levels )(th1  and 

)(th3  are measurable output variables while water level 

in the tank 2 is immeasurable. System is parameterized 
as follows: 3102313 ,=== osss  cm2, A  = 0,0707 m2. 

The task is to detect the fault occurrence represented by 
the leaks in the tanks using the proposed fault diagnosis 
scheme.  
     The first stage to design fault diagnosis system is to 
identify the three tank system. The goal of the 
identification is to obtain the required form of the TS 
model. The three tank system has two inputs and two 
outputs. A non-linear SIMULINK model is used to 
generate data for identification. The Anfis MATLAB 
environment has been used to identify TS model. The 
inputs of the TS model are )(tQ1 , )(tQ2  and its past 
values up to second order together with delayed samples 
of output variables )(th1  and )(th3 . Input signal 

variation is chosen from  0,0001 m3s-1 up to 0,0005 m3s-1 
for )(tQ1  and from 0,0004 m3s-1 to 0,0008 m3s-2 for 

)(tQ2 .For the antecedents double Gaussian membership 

functions are used with )(tQ1  and )(tQ2  being the 
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antecedent variables. The consequents are linear 
regression models to be converted to its corresponding 
state-space representation. The mean squared error for 

the two outputs is found to be 4
1 105291 −= .,re  and 

5
2 1042155 −= .,re .  The final TS model is consists of 

nine rules whereas the consequents take the form of 
state-space equations. 
     A variety of abrupt faults (leaks) have been 
considered over the simulation experiments. Fig.2 shows 
that an abrupt leak occurs in tank 1 at 13 minutes and 20 
seconds with the magnitude 0,0003 m3s-1and this leak is 
detect correctly. Generalized likelihood ratio exceeds the 
threshold at 4 seconds and the threshold is chosen with 
respect to a tradeoff between the false alarm rate and the 
detection time ant its value is ε  = 14,89. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2: Likelihood ratio when leak in tank 1 
occurs 

 
Naturally, if no faults occur, the likelihood ratio does not 
exceed the chosen threshold. It follows from Fig.2 that 
there is some behavior changes of the likelihood ratio 
after the detection, mainly at 36 minutes. This effect can 
be observed when the change of the operation point has 
been realized and is caused by unequal identified model 
accuracy in the different operation conditions. The 
disadvantage, mentioned above, can be minimalized by 
making the diagnosis system robust against the modeling 
uncertainty.  
 
 

5   Conclusion 
In this paper a fault diagnosis scheme using the modified 
TS model has been presented. Here Takagi-Sugeno 
fuzzy model has been used to describe the non-linear 
dynamic system by its decomposition onto number of 
linear submodels. Because of assumption that the 
monitored system is stochastic, the Kalman filter has 

been used to obtain the diagnostic signal – residual that 
are computed as a difference between the estimated and 
real system output. For application of the Kalman filters 
it is necessary to convert the consequents linear 
regression functions to the corresponding state space 
representations. To evaluate the residual vector, the 
generalized likelihood ratio test has been used. This test 
utilizes the local innovation processes generated by the 
Kalman filters and produces the results, based on which 
the decision of fault presence in the global system can be 
made. A three tank system has been studied to 
demonstrate of the proposed diagnostics system. The 
results indicate usefulness of the method for the early 
detection of the faults occurrence in the non-linear 
dynamic systems. Finally a demand of the extension of 
the proposed fault diagnosis method to be robust against 
the modeling errors has been emphasized. 
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