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Abstract: - This paper presents a methodology for producing good design solutions more efficiently. The 
methodology is based on augmenting a conventional evolutionary design approach with a method for 
improving suboptimal design solutions with a domain-specific knowledge-rich approach. This approach is 
based conceptually on the practice of plastic surgery, i.e. making minor adjustments to an entity, based on 
some desired qualities, i.e. specified fitness function. Additionally, the modifications made to the phenotype 
may require the re-engineering of the genotype to accord with the modified phenotype if the entity is to be 
used further in evolutionary operations. A method for genotype re-engineering is proposed in the domain of 
cellular growth generation. 
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1   Introduction 
Non-routine design tasks are characterized by the 
lack of knowledge available for their immediate 
solution [3]. Thus knowledge-lean approaches, such 
as evolutionary computation methods, are well 
suited to the task of non-routine design [14] [1], [2], 
[7]. Evolutionary computation methods are able to 
arrive at reasonable solutions fairly quickly to begin 
with but then need many generations to make 
subsequent small improvements, [3], [11]. A great 
deal of effort can be expended to make a small (but 
maybe critical) improvement. In general, there is no 
guarantee that such an improvement will be found. 
In addition, in non-routine design, it is not always 
possible to perfectly specify the fitness function 
such that optimal solutions will be found since the 
design task is not well-known. This paper argues 
that, even in such conditions, it is possible to obtain 
reasonable solutions within the bounds given and 
then, using these resulting solutions as a guide, 
make improvements to obtain better solutions. For 
example, Figure 1 (a) shows a configuration of 12 
cells that may arise after a number of generations. 
To produce an improvement such that the 
protrusion is removed and the indentation is filled 
(leading to a square in this case), Figure 1 (b), may 
take a great deal effort from the evolutionary 
computation process. Where the number of cells is 
large, (>=100), the ability of such a system to 
remove such irregularities will be inefficient. While 
we can see that removing the protrusion and filling 
in the indentation would lead to a good solution, the 
evolutionary system based on random genetic  

 
operations (crossover and mutation) on the genotype  
may not be able to produce the required solution 
within a feasible timescale.  
 

 
 
(a) an almost ‘perfect’               (b) an improved solution  

      solution 

Fig 1. Improvement of a design solution. 

 

Plastic surgery is a practice whereby features of an 
entity (generally a human) are altered to improve the 
appearance of that entity. This may be for cosmetic 
purpose or for more serious reasons. In all cases, the 
effect is on the entity itself, i.e. the phenotype, and 
there is no change to the genotype (DNA). Since 
evaluation is done on the phenotype, any 
improvement to the phenotype gives the entity a 
better chance of survival or attaining its goal, e.g. 
attaining self esteem, attracting other entities, etc. 
Plastic surgery is generally done to correct minor 
features; an entity has been generated in some way, 
but is defective in some features and minor 
corrections are made (to the phenotype) to improve 
it. It can be seen that specialized knowledge is 
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required to modify the phenotype. Different 
domains require different knowledge. The 
phenotype and the defects must be recognized and 
the means for modification determined and 
implemented.  
As in the human example, any modification to the 
phenotype (design solution) is not transmitted to the 
genotype. Any ‘children’ may carry the defective 
genes and reproduce the same defects. However, in 
design, if the modified design solution is the final 
solution required, and no more processing is to take 
place, then this does not matter as the genotype was 
just the means to the end and is no longer of any 
interest. However, if the modified design solution is 
only a part solution and is required to take part in 
further evaluation, a problem exists since all 
evolutionary operations are carried out on the 
genotype. In that case, its genotype must be re-
engineered to match the modified phenotype. This 
difficult to implement since, in general, there is no 
known connection between the phenotype and the 
genes in the genotype. Although there are some 
examples of genetic engineering [10], in general, 
there is no universal knowledge on how to modify 
the genotype to produce required characteristics of 
the phenotype. 
A conventional evolutionary method may be used, 
in situations where the form required is not known 
a priori, to produce possible solutions which are 
reasonably good but need some improvement. Once 
the solutions are produced, any suitable solutions 
can be improved by making small modifications to 
the phenotype. If the resulting solution is required 
to take part in further evolutionary operations, 
genetic-re-engineering is required as described 
above. This paper will put forward a method for re-
engineering the genotype in a given design 
representation. 
 
2   Evolutionary Design 
While knowledge-lean methods, such as 
evolutionary design, are good for discovering 
possible reasonable solutions where little 
knowledge is known a priori regarding the form of 
the solution, they are generally computationally 
expensive and may not be able to make the 
necessary improvements in a reasonable time with 
reasonable resources. Additionally, in an 
environment where there exists little a priori 
knowledge, it is not always possible to perfectly 
specify the requirements, i.e. formulate a ‘perfect’ 
fitness function. On the other hand, while 
knowledge-rich approaches can solve problems 
where the problem is well defined and the 

knowledge and methods required are also known, 
they operate in specific problem areas and, even 
within those areas, have little capacity for producing 
innovative solutions. 
This paper presents an approach combines 
knowledge-lean and knowledge-rich approaches to 
increase the efficiency of producing good design 
solutions in a non-routine design problem 
environment. The conventional evolutionary 
computation approach generates reasonably good 
solutions within given initial specifications and the 
proposed plastic surgery makes small modifications 
as necessary based on local knowledge of the 
problem once the solutions are evident. 
 
2.1 A Design Representation 
In general, design can be defined as the derivation of 
structure (form) that will satisfy a given set of 
requirements [18]. In its simplest mode, the 
construction of form can be thought of as the set of 
decisions for locating a set of cells of substances, 
where a substance may be physical (composed of a 
physical material) or virtual (e.g. composed of 
graphic entities or pixels). The construction of a 
spatial entity may be considered as the allocation of 
a physical substance composed of a ‘space’ material, 
i.e. a number of space cells. So, in summary, design 
can be see as the generation of form which can be 
produced by cellular growth. In an evolutionary 
design approach, a gene selects a module of 
substance and allocates it to some location. In the 
approach of Rosenman [14], [15], a gene locates a 
module of substance relative to another module. A 
gene, GN, is thus (M1, M2, L12) where M1 and M2 
are two modules of some substance and L12 is the 
operator for locating module M2 relative to module 
M1. A module, Mi, may be a single unit cell or a set 
of unit cells already grouped and, in general, M1 and 
M2 need not be composed of the same substance. 
Nor, in general, does a grouping of units necessarily 
need be constructed of units of the same substance. 
The instructions for a complete design solution, i.e. a 
genotype, G, is a sequence of genes where G = 
(GN1, … GNm) and GNi, i = 1,m is a gene.  
In the approach, based on the joining of polygons 
representing units of space, the allocation operation 
is founded on the joining of polygons through their 
free edges represented as vectors. Figure 2 shows the 
representation of two triangles, T1 and T2, and a 
square, SQ1, as closed vector loops. The vector V1 
is a vector of length 1 unit and angle 180o, the vector 
V2 is a vector of length 1 unit and angle 90o, V5 is a 
vector of length 1 unit and angle 60o, etc. The 
phenotype, P, of each polygon is given as the loop of 
vectors. Since this is a loop, the start point of the 
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loop is immaterial, although in the examples it is 
given as the lowest-leftmost point. 

 
Figure 2. Polygons as closed vector loops 

 

Polygons may be joined by conjoining 
counteractive (equal and opposite) vectors [13].  
When a number of squares are joined randomly the 
resulting shapes (polyminos) are not likely to show 
much regularity, especially if the number of squares 
is large. A shape with many protrusions and 
indentations will have many changes of direction 
on its boundary. Figure 4 shows 40 random 
generations of 16-unit polyminos. 
 
 

 
 

Figure 3. 40 random generations of 16-unit polyminos 
 
For the example in Figure 3, using 16 cells, the 
evolutionary program will evolve the shapes to find 
L- and T-shapes as well as rectangles and the 4 x 4 
square. However, when using a small-scale cell to 
allow for small discriminations in the dimensions, 
the number of total cells will be very large. For 
example if the scale of the cells in Figure 3 were 
reduced by a factor of 10, allowing for increments 
in length of say 10cms rather than 1m, the total 
number of cells would be 1600. For a large number 
of cells, an evolutionary process, will, after a 
number of generations, give some indication of 
possible satisfactory shapes but will, usually, not be 
able to perfectly smooth out all the protrusions and 
indentations. One reason for this may be that the 
fitness function is not perfectly specified since such 
knowledge may be beyond the current knowledge 
of the design situation. For example, a fitness 
function based on minimizing the perimeter to area 

ratio will find that, with a large number of cells, the 
number of cells at the perimeter is small compared 
to the number of interior cells which are fairly well 
compacted. Thus most of the solutions will show a 
fairly high score for that fitness function. The 
process will not be able to make any significant 
improvement in any reasonable time. Figure 4 shows 
a shape of 85 cells after evolution over a number of 
generations. The perimeter to area ratio shows a 
fitness of 85.8% compared to the ideal of a square of  
area 85 (perimeter = 36.88). 
 

 
 

Figure 4. A polymino of 85 units 
 
The reason for the high fitness, even though the 
perimeter is not very smooth, is that the central part 
of the shape (outlined in bold), which contains the 
majority of the units, is quite compact. Continuing 
the evolutionary process usually leads to 
convergence on one or other of the ‘better’ solutions 
to date before any major improvement is attained. 
 
3  Plastic Surgery in Evolutionary 
Design 
In an evolutionary system, selection acts with 
respect to the phenotype. Those members whose 
phenotypes are judged to be well-suited to their 
environment will have a better chance of survival 
and of propagating their genes [7]. Thus any 
improvement in the phenotype, regardless of any 
change in the genotype, will improve that member’s 
chance of survival and propagation. Of course, this 
improvement will not be transmitted to the 
member’s descendants. In a design domain the 
fitness of the design is what counts, how it got to be 
that way is secondary. 
The Merriam-Webster dictionary [9] states that 
plastic surgery is: 
“: surgery concerned with the repair, restoration, or 
improvement of lost, injured, defective, or 
misshapen body parts” 
 

Plastic surgery is aimed at improving the organism’s 
survival in its environment (whatever survival may 
mean).  

a) T1 

V1 

V5 V6 

         P = (V5, V6, V1,) 

V3 

V7 V8 

b) T2 

P = (V7, V3, V8,) 

V3 

V1 

V2 V4 

c) SQ1 
 

P= (V2, V3, V4, V1,)
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Plastic surgery is proposed here as a solution to 
improving a phenotype (design solution) generated 
through an evolutionary computation method. It is 
proposed as a general concept where the issues are 
as follows: 
• design solutions are produced which are 
reasonable but could be improved by relatively 
small modifications. This requires particular 
domain knowledge.  
• if the design solutions are the end product of the 
process then the modified phenotype is the final 
solution and it is no longer necessary to consider 
the genotype. However, if the ‘solution’ is part of 
an on-going process, e.g. a component of a 
hierarchical composition, it may be necessary to re-
engineer the genotype to match it to the new 
phenotype so as to enable it to be operated on by 
the genetic operators.  
• the modifications should be limited to relatively 
small remedial improvements. It is not meant to 
carry out major reconstructions of the phenotype as 
this leads to too large a departure from the solutions 
found. 
 
While an example in the domain of the generation 
of smooth polygons will be used to demonstrate the 
concepts, this paper suggests that the general 
principles of plastic surgery and genetic re-
engineering could be applied to all domains since 
all design is a function of locating elements in a 
certain configuration.  
 
 
4   Methodology 
The implementation of plastic surgery consists of 
several transformation functions. There exist 
various smoothing algorithms mainly in image 
processing, where they are used to produce 
smoothed surfaces from polygonal or noisy surfaces 
[5], [6], [19]. Algorithms such as Potrace [12] 
transform bitmap images into vector graphics. 
Another process uses sampling for anti-aliassing in 
ray tracing [17].  
 Sampling works by overlaying a grid of larger 
cells on the form. Each cell is analyzed to 
determine what percentage of the cell is occupied. 
Cells with 50% or more occupation would be filled 
in completely, while those with less than 50% 
occupation would be left empty. This process is 
shown in Figure 5 where it is compared to the 
process which allows smaller increments of 
discrimination. The small-increment method is 
closer to the philosophy of making minor repairs 
rather than large-scale modifications and results in 

shapes closer to the original shapes than the 
sampling method which results in ‘major 
reconstructions’. 
 
 

 

 

 

 

 

 

 

 

(a) smoothing maintaining               (b) smoothing using      

      sampling                                          smaller unit size                          

Figure 5. Comparing plastic surgery to sampling 
 
 
Modifications can be carried out to various levels of 
refinement, i.e. with respect to the number of units 
to be treated. Figure 6 shows the various examples 
(defects) which may require modification. These 
include protrusions, indentations and corners, 
ranging from one unit to several units. The number 
of units in each direction may depend on the scale, 
i.e. the total number of units in a shape. While 
Figure 6 shows defects on one edge or corner only, 
the defects may occur on any of the four edge or 
corner directions (for polymino shapes). 
Figure 7 shows the rules for plastic surgery, i.e. 
modifying the phenotype (shape) according to the 
type of defect (protrusion, indentation or corner) and 
the number of units to be rectified in the two 
directions. Again, it should be noted that the defect 
may occur in any direction so that the depth and 
width of a defect are local to the particular direction. 
 

 
Figure 6. Cases for modification 

 
 

a) one-unit protrusion 

V3 

V2 V4 

V3 

V3 V3 V3 

V2 

V2 

V3 V3 

V4 

V4 

b) multi-unit protrusion 

V2 V4 

V3 

V3 V3 

V2 

V2 

V3 V3 

V4 

V4 

V3 V3 

c) one-unit indentation d) multi-unit indentation 

V4 

V3 

V3 

V4 

V4 

V3 

V4 
V3 

V4 

V3 

e) one-unit corner P = …,V3, mV4, nV3, 
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Figure 7. Rules for plastic surgery of defects 

 
The level of refinement is set by setting the depth 
and width, in terms of number of units, for the 
plastic surgery to take effect. The degree of 
refinement and the order of implementation of the 
operations will determine the final result. Different 
parameters and sequences will produce different 
results. In the physical world it is not possible to try 
several alternatives, whereas in a computational 
process it is possible to try alternatives and select 
among them depending on the result. Figure 8 
shows two different sequences of operations on a 
shape of 50 units based on the following operations 
or rules: 
 
Rule 1: Defect = protrusion max depth = n 
                           max width = 1 
Rule 2: Defect = indentation max depth = 1 
       max width = 3 
Rule 3: Defect = corner  max depth = 1 
   max width = 1  
 
Rule 1 states that all protrusions of width 1 unit, no 
matter their depth, are to be deleted. 
 The shaded and dotted units show the units 
added or trimmed. The first solution has grown 
from 50 units to 54 units whereas the second 
solution has increased to 52 units. The size of the 
resulting solution depends on the number of units 

trimmed or filled. Since the number (size of the 
element) may be critical, some constraints may need 
be applied regarding the number of units trimmed or 
added or the number of elements trimmed may need 
to be balanced by the number of elements added ( 
and vice versa). In a very large number of units, the 
number of units adjusted may not makes a 
significant change to the size of the shape since the 
number of units on the perimeter is small compared 
to the total number of units. 

V3 V3 

V2 

V2 

V3 V3 

V4 

V4 

a) removal of a multi-unit protrusion  

V3 V3 

V2 

V2 
V4 

V4 

V3 V3 

b) ‘filling-in’ of a multi-unit indentation 

V4 

V3 

V4 
V3 

V4 

V3 

c) ‘filling-in’ of a multi-unit corner 

V3 V3 V3 V3 

P= …,V3, mV2, nV3, mV4, V3, …, P = …,V3, nV3, V3, …, 

P = …,V3, mV4, nV3, mV2, V3, …, P = …,V3, nV3, V3, …, 

V3 V3 V3 V3 

V3 

V4 

V4 

V4 

V3 V3 

P = …,V3, mV4, nV3, mV4, V3, …,  

A method for recognizing which shapes are suitable 
for plastic surgery is based on the measure of fitness 
of the shape as well as on a measure of the number 
of defective units with respect to the shape’s 
perimeter. 
 

 
 

RR1 R

RRR

Figure 8. Two different sequences for plastic surgery 

 
5   Implementation Example 
An example in the domain of room designs was 
implemented. Rooms need not necessarily have 
rectangular shapes nor do they necessarily have to 
have ‘smooth’ walls. They may have recesses but 
generally these need to be large enough to 
accommodate furniture such as bookshelves etc. So, 
in general, small protrusions and recesses in the 
perimeter are not acceptable. The aim is to generate 
shapes for a room of 18 m2. A variation of 300 mm 
in each dimension was set to allow for a wide range 
of possible dimensions. This results in the 
arrangement of 200 square units of 300 mm x 300 
mm.  
The fitness functions used were those used in 
Rosenman [14], [15]. A function that tends to 
smooth the perimeter is that of minimizing the 
perimeter. The minimum perimeter of a polymino 
shape is ideally a square. Using this fitness function 
will tend to make shapes more compact, thus 
reducing the length of the perimeter. The aim of 
room design is not to necessarily produce square or 
rectangular shapes but to use the fitness function to 
drive the evolutionary process towards such shapes, 
generating other suitable shapes in the process. 
Another measure of the smoothness of the perimeter 
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is that of minimizing the number of corners. The 
minimum number of corners of a polymino shape is 
4. Obviously a square has both the minimum area 
and the minimum number of corners. This function 
has a tendency to prefer L-shapes over T-shape. 
Both these shapes will have the same perimeter to 
area ratio but the L-shape has six corners compared 
to eight for the T-shape.  
For the first function, minimizing the perimeter to 
area function, the fitness is given by: 
 
f1 = (MaxP – P / MaxP – MinP) x 100  --------- (1) 
where  
f1 = fitness function wrt minimum perimeter to area 
MaxP = maximum possible perimeter for a shape of   
              n units 
P = perimeter of generated shape 
MinP = (ideal) minimum perimeter of a shape of n   
            units 
and 
Min P = 4√n  (ideal square) 
MaxP = 2n + 2 (e.g. shape of 1 unit width and n  
             units length) 
where 
n = number of units 
 
For the second function, that of minimizing the 
number of corners, the fitness is given by: 
 
f2 = (Max C – C / MaxC – 4) x 100  -----------  (2) 
where 
MaxC = maximum possible number of corners for a  
          shape of n units 
C = number of corners of generated shape 
and 
MaxC = 2n (e.g. fully stepped shape) 
 
Both functions use a ratio of the range of possible 
values to determine the normalized percentage 
fitness of the shape. The total fitness is given as: 
 
TF = (f1 + f2) /2 ------------------------------------- (3) 
 
Different weightings could be used for each fitness 
function to influence the shape towards one or the 
other but for this example a simple weighting of 1 
for each has been used for simplicity. 
A C++ program for Windows was written to 
generate and evolve a population of polymino 
shapes using a genetic algorithm based on cell 
addition using the edge vector representation 
discussed previously and then to perform plastic 
surgery. The inputs to the generation and evolution 
are: the number of units, the number of members of 
the population and the maximum number of 

generations to be run. The genetic algorithm may 
terminate before the maximum number of 
generations is reached if it converges or remains 
stable. A run converges if the average fitness is 
within 5% of the best fitness and remains stable if 
there is no significant change in the best solution or 
average fitness over a specified number of 
generations. Simple one-point crossover was used 
with the best of the two populations (parent and 
child) kept to preserve the best solution. The 
remaining members of the new generation are 
selected using the roulette wheel method. The inputs 
to the plastic surgery are the width and length of the 
three repair cases (protrusion, indentation and 
corner) specifying the scale of the repair. 
The program was run several times with the 
following parameters: 
 No. of units 200 
 Population 40 
 Max. no. of generations 60 
 Max. depth  1 
 Max width 3 
 
Results were similar over a number of runs. Figure 9 
shows the results of one of these runs. Figure 9. 
shows a typical growth in fitness over the 60 
generations using the conventional evolutionary 
process. The average fitness of the population is 
72.6%. As can be seen from the graph, the 
population has arrived at a fairly stable state and it 
could take a very large number of additional 
generations to produce any improvement (if any is 
possible). After the application of plastic surgery, 
the average fitness jumps to 89.3%. This is a 23% 
improvement. 
 

 
 

Figure 9. Effect of plastic surgery after the evolutionary 
process 

 
Figure 10. shows three of the shapes subjected to 
plastic surgery. It can be seen that these three 
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members, previous to the plastic surgery, had a high 
fitness (95.6 to 96.6) even though their shapes are 
not all that good. The first shape is better than the 
other two but still has some small changes in 
direction in the upper left-hand part.  

 
 
 

 
 
Figure 10. members from the run before and after plastic 

surgery 
 
The relatively high fitness values are due to the 
fitness function used which, in part measures the 
compactness of the shape. Since a large proportion 
of the shapes is indeed compact, the fitness values 
are high and there is little pressure to improve them. 
In the previous work (Rosenman 1996a, b) where 
only relatively small number of units were used 
(maximum 25) this problem did not exist. It can be 
seen that while the application of the plastic surgery 
has improved the fitness values, its main 
contribution is in producing better shapes, i.e. 
shapes with fewer small protrusions, etc. No 
method was used to ensure that the size of the shape 
(room) remained the same and the first shape has 
increased to 208 units, the second to 206 and the 
third to 207, an increase of less than 5% in all 
cases.  Note that while none of the shapes shown 
are rectangles, nevertheless they could be suitable 
as rooms in certain instances. 
 
 
6   Re-Engineering the Genotype 
A phenotype may be generated in many ways, i.e. 
the same phenotype may have different genotypes. 
Figure 11 shows just three examples of the same 
shape generated by adding the cells in different 
sequences. The bold lines are the edges joined. The 
genotype description shows just the edge joining 

part of the genes for simplicity as the module added 
is the same unit square cell. 
 

G = (V4:V2,V3:V1,V4:V2, 
         V3:V1,V3:V1) 

1 2 4
3 5 6

1 2 3 
5 4 6 

1 5 6
2 3 4

G = (V4:V2,V4:V2,V3:V1, 
         V2:V4,V3:V1) 

G = (V3:V1,V4:V2,V4:V2, 
         V1:V3,V1:V3) 
 

 

TF = 96.6 TF = 96.1 TF = 95.5 

TF = 97.0 TF = 98.1 TF = 98.1 

Figure 11. Three different ways of generating the same 

shape 

 

A shape can be ordered according to different 
traversal strategies. Figure 12 shows three such 
strategies. The genotype shown below each strategy 
is for the general case (n units) calculated according 
to the particular traversal carried out. 
 
 

  
  

G = (k(V4:V2),V3:V1,  
        m(V2:V4),V3:V1, …) 

G = (m(k(V4:V2))) G = (k(V4:V2),m(V3:V1), 
        n(V2:V4),p(V1:V3), …) 
 

  

Figure 12. Three different strategies for generating a 

shape 

All three strategies are based on starting at the left-
hand bottom corner. The first strategy is based on 
traversing the shape left-to-right as far as possible, 
moving up one unit and then traversing right-to-left 
as far as possible, moving up one unit and repeating 
the process until all units have been traversed. The 
second strategy is based on a single direction 
traversal. That is traversing left-to-right as far as 
possible then moving up one unit from the starting 
point and repeating the process. The third strategy is 
based on a spiral traversal. Note that traversal could 
be carried out either horizontally or vertically. Other 
geometries, those not based on orthogonal axes, may 
need different strategies. The genotype is calculated 
by simply noting whether the traversal was carried 
out in a left-to-right, right-to-left, upward or 
downward direction, equating to a V4:V2, V2:V4, 
V3:V1 or V1:V3 edge joining. While this is not an 
exhaustive presentation of all possible strategies, it 
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shows that it may be possible to construct a 
genotype given a phenotype where the phenotype 
has been constructed through a sequential series of 
allocation of cellular units. 
 
7   Conclusions 
This paper has presented a method of generating 
form through cellular growth as a simplified model 
of design through the allocation of substance to 
satisfy a set of given requirements. It has argued 
that evolutionary design methods are suitable 
approaches for non-routine design generation since 
they are knowledge-lean and hence suitable for 
situations where there is little a priori knowledge 
available regarding any associations between the 
requirements and the form to be generated. A 
simple model of allocating substances through gene 
sequences was presented, where each gene carries 
the instruction for locating one module of substance 
relative to another module. An example using 
square cells was used for simplicity although the 
approach could be generalized to 3-D polyhedral 
shapes. However, it is argued that for complex 
objects with large number of cells, with fitness 
functions that may be imprecise, the solutions 
arrived after a reasonable effort may still need 
improvement.  
The results of the implementation of the example 
show that plastic surgery is a useful method for 
efficiently improving design solutions where the 
evolutionary process has achieved stability. Plastic 
surgery is seen as a knowledge-based mutation of 
the form (phenotype). Though illustrated in the 
context of the 2D cellular formation of shapes and 
the smoothing of irregular perimeters, it is a general 
concept applicable to 3D forms and other 
applications. Other applications will use domain 
specific knowledge for their repair rules.  
Future work will need to take into consideration the 
allocation of units of different substances and the 
repair of the whole. This will mean deciding not 
only what form needs to be repaired but what 
substance should be used. 
Genetic re-engineering of the genotype was shown 
to be feasible in the context of the cellular 
generation of shapes. However, more work is 
required to develop this concept. Future work 
involves the implementation of the re-engineering 
method for various stages of an evolutionary 
process. It is to be determined if the process of 
carrying out plastic surgery and then re-engineering 
the genotype at various stages of the evolutionary 
process leads to satisfactory results. Satisfactory 
results would be those where good design solutions 

are obtained in an acceptable use of resources, i.e. 
number of generations or processing time. 
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