
Dynamic and Adjustable Particle Swarm Optimization 
 

Chen-Yi Liao, Wei-Ping Lee, Xianghan Chen, Cheng-Wen Chiang 

Department of Management Information System 

Chung Yuan University 

Taoyuan 

Taiwan, R.O.C. 

janeii@mis.cycu.edu.tw, wplee@cyc.edu.tw, xianghan@mis.cycu.edu.tw, 

owenattaiwan@hotmail.com 
 

 

Abstract: - Particle Swarm Optimization (PSO) is a stochastic, population-based evolutionary search technique. 

It has difficulties in controlling the balance between exploration and exploitation. In order to improve the 

performance of PSO and maintain the diversities of particles, we propose a novel algorithm called Dynamic and 

Adjustable Particle Swarm Optimization (DAPSO). The distance from each particle to the global best position is 

calculated in order to adjust the velocity suitably of each particle. Four benchmark functions such as Sphere, 

Rosenbrock, Rastrigrin, Griewank are used for the comparison of DAPSO with the Standard PSO. The 

experiments prove that DAPSO has better performance than the Standard PSO. 
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1   Introduction 
Population-based stochastic search algorithms have 

been very popular in recent years in the research 

arena of computational intelligence. Some 

well-known search algorithms such as Genetic 

Algorithm[8], Evolutionary Strategies[7], 

Evolutionary Programming[5], have been 

successfully implemented to solve simple problems 

to complex real world problems.  

     Particle Swarm Optimization (PSO) is an 

evolutionary computation technique, first proposed 

by Kennedy and Eberhart, which is inspired by flocks 

of birds and shoals of fish in 1995[10]. It is 

implemented by the common evolutionary 

computation techniques, and it is initialized with a 

population of random solutions and searches for the 

optimum by updating generations. And the 

reproduction is based on the old generations. PSO is 

successfully implemented in various optimization 

problems. It is popular due to its simplicity in its 

implementation, as a few parameters are needed to be 

tuned.  

     However, even through PSO is a good and fast 

algorithm, it has limitations when solving complex 

problems. The original PSO has difficulties in 

controlling the balance between exploration and 

exploitation. In order to improve the performance of 

PSO and maintain the diversities of particles, we 

propose a novel algorithm called Dynamic 

Adjustable Particle Swarm Optimization (DAPSO). 

The distance from each particle to the global best 

position is calculated in order to adjust  the velocity 

suitably of each particle. Section 2 presents an 

overview of the PSO. In Section 3, a brief 

introduction of DAPSO is given. In Section 4, some 

experiment results are presented. Conclusion is given 

in Section 5.      

 

 

2   Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is an 

evolutionary computation technique, which is 

inspired by flocks of birds and shoals of fish 

(Kennedy and Eberhart, 1995). In PSO, a number of 

simple entities ( the particles) are placed in the space 

of some problem and each evaluates its fitness as its 

current location. Each particle determines its 

movement through the space by considering the 

particle which had the best fitness and the history of 

its own, then it moves with a velocity. Finally, the 

swarm is likely to move close to the best location. 

The velocity and position of each particle is adjusted 

by the following formulas: 

 
 

1 2() ( ) () ( )id id id id gd idV w V c rand P X c Rand P X= × + × × − + × × −  (1) 

id id id
X X V= +  (2) 

 

where c1 and c2 are termed the cognitive and social 

learning rates. These two parameters control the 

relative importance of the memory of the particle 

itself to the memory of the neighborhood. The 

variable rand() and Rand() are two random functions 
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that is uniformly distributed in the range [0,1]. Xi = 

(Xi1, Xi2, … , XiD) represents the ith particle. Pi = 

(Pi1, Pi2, …, PiD) represents the best previous 

position of the ith particle. The symbol g represents 

the index of the best particle among all the particles. 

Vi = (Vi1, Vi2, … , ViD) represents the velocity of 

the ith particle. Variable   is the inertia weight. The 

general process of PSO is as follows. 

 
Do 

    Calculate fitness of particle 

Update pbest if the current fitness 

is better than pbest 

Determine nbest for each particle: 

choose the particle with the best 

fitness value of all the neighbors as 

the nbest 

For each particle 

Calculate particle velocity 

according to (1) 

Update particle position according 

to (2) 

While maximum iterations or minimum  

criteria is not attained 

 

     Since the introduction of the PSO algorithm, 

several improvements have been suggested. In 1998, 

inertia weight   was first proposed by Shi and 

Eberhart[3]. The function of inertia weight is to 

balance global exploration and local exploitation. In 

the following year, Clerc proposed the constriction 

factors to ensure the convergence of  PSO[2]. 

Eberhart and Shi compared inertia weight with 

constriction factors and found that the constriction 

factors was better convergence than inertia 

weight[4]. 

 

 

3   Dynamic and Adjustable PSO 
In this section, we propose two improved algorithms 

called Dynamic and Adjustable Particle Swarm 

Optimization 1 (DAPSO1) and DAPSO2. In 

DAPSOs, in order to adjust the velocity of each 

particle, all particles are calculated the distance from 

itself to the global best position by the following 

function. 

 

( )
di di gbest

x x x∆ = −  
(3) 

( )d diFD Max x= ∆  (4) 

 

     where dix   is the position of the ith particle,  gbestx  

is the position of gbest. dFD  is the furthest distance 

from the particle to gbest. In DAPSO1, the velocity 

and position of each particle is adjusted by the 

following formulas: 

 

1 2() ( ) () ( )
id id id id gd id

V w V c rand P X c Rand P X= × + × × − + × × −  (5) 

() * 0.5ac rand=  (6) 

*(1 * ) 0.5

*(1 * ) 0.5

0.5 0.5

di

id d d

d

di

new id d d

d

di

id d d

d

xGene Iter
V ac ac

Gene FD

xGene Iter
V V ac ac

Gene FD

x
V ac ac

FD

 ∆−
+ > +


 ∆−

= − < −

 ∆

− <= <= +


 

(7) 

id id newX X V= +  (8) 

 

     where Xid is updated by the velocity which is 

adjusted by the distance from particle to the global 

best and   is the adjustment coefficient.  

DAPSO1 and DAPSO2 differ from the adjusting 

method. In DAPSO2, the velocity and position of 

each particle is adjusted by the following formulas: 

 

1 2() ( ) () ( )id id id id gd idV w V c rand P X c Rand P X= × + × × − + × × −  (9) 

()
*(1 * ) 0.5

4

()
*(1 * ) 0.5

4

0.5 0.5

di
id

d

di
id id

d

di
id

d

xrand Gene Iter
V ac

Gene FD

xrand Gene Iter
V V ac

Gene FD

x
V ac ac

FD

 ∆−
+ > +


 ∆−

= − < −

 ∆

− <= <= +


 

(10) 

id id idX X V= +  (11) 

 

 
 

 

Fig.1: Three radius of (0.5 )*
d

ac FD− , (0.5 ) *
d

ac FD+ , 

and 
d

FD . 
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  Other particles 
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Fig.2: Adjust the velocity according to the distance 

from the particle to gbest. 

 

In Fig.1, 1x
, 2x

 and 3x
 all have difference 

distance from itself to global best position. 1x
 drops 

within the radius of (0.5 )*
d

ac FD− . The distance from 

2x
 to global best position is between (0.5 )*

d
ac FD−  

and (0.5 )*
d

ac FD+ . 3x
 drops beyond the radius of 

(0.5 )*
d

ac FD+  in DAPSO1. In DAPSOs, we define the 

“long distance” as the distance from the particle to 

the global best beyond (0.5 )* dac FD+  and the “short 

distance” as the distance from the particle to the 

global best is smaller than (0.5 )* dac FD− . In DAPSO1, 

the particles far away from the global best should be 

given larger value of velocity so it may explore an 

unknown region, whereas those close to the global 

best should be given smaller value of velocity so that 

it may exploit the neighbourhood of the global best.  

In DAPSO2, if there were many particles far away 

from the global best position, then the velocities 

should be given a larger value. If there were many 

particles near from the global best position, then the 

velocities should be given a smaller value. DAPSO1 

only adjusts the velocity of the certain particle, but in 

DAPSO2, the velocities of all particles are adjusted 

together. 

The general flow of DAPSOs and the flowchart of 

DAPSO are shown as follows. 

Step 1.  Initialization of a population of particles  

with random positions and velocities  

Step 2.  Evaluation of particles. 

Step 3. Calculate the distance from each particle to 

the global best position and save the farthest  

distance in the memory. 

Step 4. Adjust particle’s velocity according to its 

distance from itself to the global best 

position. 

Step 5. Update particle’s position by the adjusted 

velocity. 

Step 6. Repeat Step.2~Step.5 until termination 

criteria are met. 

 

 
 

Fig.3: Flowchart of DAPSO. 

 

4   Experiments 
In this section, four benchmark functions, listed in 

Table 1, are used for the comparison of DAPSO with 

Standard PSO. These functions are all minimization 

problems with minimum value zeros.  

     The initial range of the population and Vmax are 

listed in Table 2. All functions are tested on 10, 20 

and 30 dimensions. The maximum number of 

generations is set as 1000, 1500 and 2000 

corresponding to the dimensions 10, 20 and 30. The 

population sizes are 20, 40 and 80. The general 

parameters of PSO are set as c1=c2=2 for all the PSO 

runs. All experiments were run 30 times. The mean 

value and standard deviation of the results are 

presented.    

 

Slow 

Fast Fast 

Usual Usual 

 

gbest   the farthest particle from gbest 

  Other particles 
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Table 1: Benchmark functions. 

Test Functions Formulations 

Sphere function f1 
2

1

1

( )
n

i

i

f x x
=

=∑  

Rosenbrock function f2 
2 2 2

2 1

1

( ) (100( ) ( 1) )
n

i i i

i

f x x x x
+

=

= − + −∑  

Rastrigrin function f3 
2

3

1

( ) ( 10cos(2 ) 10)
n

i i

i

f x x xπ
=

= − +∑  

Griewank function f4 
2

4

1 1

1
( ) cos( ) 1

4000

nn
i

i

i i

x
f x x

i= =

= − +∑ ∏  

 

 

Table 2: Initialization ranges and Vmax. 

Test Functions Vmax Initialization Range 

Sphere function f1 100 (50, 100) 

Rosenbrock function f2 100 (15, 30) 

Rastrigrin function f3 10 (2.56, 5.12) 

Griewank function f4 600 (300, 600) 

 

Table 3: The mean fitness value and standard derivation for Sphere function. 

Standard PSO DAPSO1 DAPSO2 Popu. 

Size 
Dim. Gene. 

Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

10 1000 5.48E-20 1.67E-19 5.08E-12 1.44E-11 1E-30 4.16E-30 

20 1500 8.3E-12 1.66E-11 0.006151 0.01351 1.45E-17 5.84E-17 20 

30 2000 2.92E-08 6.53E-08 0.247817 0.143835 7.11E-11 3.09E-10 

10 1000 5.5E-24 2.1E-23 4.58E-22 1.26E-21 1.08E-38 5.45E-38 

20 1500 6.11E-15 1.97E-14 1.97E-07 4.22E-07 1.66E-27 8.74E-27 40 

30 2000 8.18E-11 1.98E-10 1.21E-05 3.98E-05 2.84E-42 1.27E-14 

10 1000 1.73E-18 4.4E-18 1.15E-26 4.802E-26 2.96E-45 8.26E-45 

20 1500 3.38E-18 6.53E-18 1.29E-15 4.32E-15 4.36E-32 5.85E-32 80 

30 2000 2.1E-13 2.68E-13 1.41E-10 3.7E-10 5.92E-24 1.69E-23 

 

Table 4: The mean fitness value and standard derivation for Rosenbrock function. 

Standard PSO DAPSO1 DAPSO2 Popu. 

Size 
Dim. Gene. 

Mean Best St. Dev. Mean Best St. Dev. Mean Best St. Dev. 

10 1000 133.3891 316.0486 53.19439 165.1511 76.72229 181.8278 

20 1500 160.7462 309.2228 1202.878 3151.682 171.721 322.933 20 

30 2000 223.125 360.6773 2995.28 6011.84 274.0211 299.0556 

10 1000 70.4366 160.4263 41.91747 69.1192 74.61149 94.89749 

20 1500 154.2409 223.3388 260.8026 300.2551 53.32104 90.1557 40 

30 2000 189.5397 277.9211 303.1766 427.297 186.9029 350.1764 

10 1000 44.3157 62.1308 19.94126 46.71211 22.11648 55.87017 

20 1500 172.6501 535.1584 134.1581 314.6489 76.11878 111.1735 80 

30 2000 195.9554 270.9865 155.0454 254.3396 143.2973 174.3063 
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Table 5: The mean fitness value and standard derivation for Rastrigrin function. 

Standard PSO DAPSO1 DAPSO2 
Popu. 

Size 
Dim. Gene. Mean 

Best 
St. Dev. 

Mean 

Best 
St. Dev. 

Mean 

Best 
St. Dev. 

10 1000 4.81036 2.45335 5.81817 3.331006 5.334921 3.113383 

20 1500 21.71077 7.76718 22.92239 6.387469 21.45805 6.041894 20 

30 2000 53.1911 10.1221 61.21653 15.73108 46.10063 13.18137 

10 1000 3.32043 1.61849 3.516072 1.805159 3.118471 1.626242 

20 1500 16.8017 4.89573 17.39875 7.887492 15.32236 4.758035 40 

30 2000 37.3208 9.6876 41.13881 12.26015 34.92302 11.37834 

10 1000 2.32178 1.1187 2.291675 1.283505 2.093427 1.338046 

20 1500 12.53698 3.13126 11.92332 3.549624 10.7124 4.250956 80 

30 2000 29.78461 8.18153 30.90371 9.178175 25.9353 7.069035 

 

Table 6: The mean fitness value and standard derivation for Griewank function. 

Standard PSO DAPSO1 DAPSO2 
Popu. 

Size 
Dim. Gene. Mean 

Best 
St. Dev. 

Mean 

Best 
St. Dev. 

Mean 

Best 
St. Dev. 

10 1000 0.09015 0.04242 0.10784 0.052975 0.085375 0.038538 

20 1500 0.02621 0.02624 0.024692 0.022493 0.029952 0.027586 20 

30 2000 0.02487 0.02220 0.026929 0.018606 0.031479 0.030537 

10 1000 0.07724 0.03871 0.079622 0.038493 0.068643 0.025666 

20 1500 0.02824 0.02657 0.032117 0.031035 0.025966 0.031017 40 

30 2000 0.01467 0.01745 0.01434 0.018109 0.012845 0.018303 

10 1000 0.072 0.03254 0.083686 0.035153 0.064111 0.029819 

20 1500 0.028402 0.027861 0.029899 0.023863 0.026533 0.024003 80 

30 2000 0.011466 0.021425 0.013935 0.020599 0.009996 0.012303 

 

     DAPSO1 can improve the performance for the 

Rosenbrock Function if the dimension is 10, the 

standard deviation illustrates that DAPSO1 is stable 

if the dimension is small in most cases.  

     But for the Rastrigrin function and Griewank 

function, the performance of DAPSO1 is worse than 

PSO’s.  

Table 3 illustrates that DAPSO2 can improve the 

performance whether dimension is 10, 20 or 30 for 

the Sphere Function.  

     For the Rosenbrock function, DAPSO2 has the 

better performance than PSO. And the standard 

deviation shows that DAPSO2 is a stable algorithm.  

     For the Rastrigrin function, DAPSO2 has better 

performance than PSO.  

     DAPSO2 has better performance than PSO if the 

problem is simple for the Griewank function. Table 6 

illustrates that DAPSO2 performs better if the 

problem of great complexity, but it needs a larger 

population (population size is 40 or 80) to evolve. 

 

 

4   Conclusion 
This paper proposed DAPSO which consideration to 

the distance from particle to the global best.  The 

distance from each particle to the global best position 

is calculated in order to adjust the velocity of particle 

suitably.  

     In section 4, four benchmark functions such as 

Sphere, Rosenbrock, Rastrigrin, Griewank are used 

for the comparison of DAPSO with Standard PSO. 

The experimental results prove that the DAPSO can 

achieve good results. And the standard deviation 

illustrates that DAPSO is stable even though the 

problem has the great complexity. 

 

References: 

[1] Angeline, P. J., Evolutionary Optimization versus 

Particle Swarm Optimization: Philosophy and 

Performance Differences, 1998 Annual 

Conference on Evolutionary Programming, 1998. 

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007      305



[2]Clerc, M., The Swarm and the Queen: Towards a 

Deterministic and Adaptive Particle Swarm 

Optimization, Proceedings of the IEEE Congress 

on Evolutionary Computation, 1999. 

[3]Eberhart, R. C. and Shi, Y., A Modified Particle 

Swarm Optimization, Proceedings of IEEE 

International Conference on Evolutionary 

Computation, 1998, pp.69-73. 

[4]Eberhart, R. C. and Shi, Y., Comparing Inertia 

Weights and Constriction Factors in Particle 

Swarm Optimization, Proceedings of the 2000 

Congress on Evolutionary Computation, Vol. 1, 

2000, pp.84-88. 

 [5]Fogel, D. and Scbald, A.V., Use of Evolutionary 

Programming in the Design of Neural Networks 

for Artifact Detection, Proceedings of the Twelfth 

Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society, 

1990, pp. 1408-1409. 

[6]Grimaldi, E., Grimaccia, F., Mussetta, M., Zich., 

R. and  Pirinoli, Genetical Swarm Optimization: 

A New Hybrid Evolutionary Algorithm for 

Electromagnetic Applications, Proceedings of the 

18
th

 International Conference on Applied 

Electromagnetic and Communications, 2005, pp. 

1-4. 

[7]Greenwood, G.W., Lang, C. and Hurley, S., 

Scheduling Tasks in Real Time Systems using 

Evolutionary Strategies. Proceedings of the Third 

Workshop on Parallel and Distributed Real-Time 

Systems, 1995, pp. 195-196. 

[8]Holland, J., Genetic Algorithms, Scientific 

American, 1992, pp. 44-50. 

[9]Juang, C., A Hybrid of GA and PSO for Recurrent 

Network Design, IEEE Transactions on Systems, 

Man and Cybernetics, Vol. 34, No. 2, 2004, 

pp.997-1006. 

[10] Kennedy, J. and Eberhart, R.C., Particle Swarm 

Optimization, Proceedings of the Fourth IEEE 

International Conference on Neural Networks, 

1995, pp. 1942-1948. 

[11] Poli, R., Chio, C. and Langdon, W., Exploring 

Extended Particle Swarm: A Genetic 

Programming Approach, Proceedings of the 2005 

Conference on Genetic and Evolutionary 

Computation, Washington, 2005, pp. 169-176. 

Proceedings of the 8th WSEAS International Conference on Evolutionary Computing, Vancouver, British Columbia, Canada, June 19-21, 2007      306


