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Abstract: - Material requirement planning (MRP) is used as an important technique in production planning topics. 
Several researches have been carried out in MRP systems, however in the case of fuzzy lead time (FLT), there are 
few researches available in the literature. In this paper, fuzzy lead time is discussed to cover an uncertainty 
condition in MRP systems. Hereby, the history of a vendor delivery and the volume of an order are considered as 
inputs and lead time is considered as an output of the proposed fuzzy system. Finally, lead time is estimated based 
on generating fuzzy rule bases and some linguistic rules, which are logical relationships between inputs and 
output. To establish the validation of the proposed approach, results of lead time obtained by the Monte Carlo 
simulation are compared with fuzzy lead times, both in 20 independent observations, each in 1000 simulation 
runs, using two-way analysis of variance (ANOVA). This statistical analysis also confirms the superiority of the 
proposed approach significantly. 
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          1   Introduction 

Material requirement planning (MRP) is used in 
planning and control systems for batch manufacturing 

systems. The robustness of the MRP logic comes from 
its ability to deal with complexity, variability, and 
uncertainty. Key characteristics include the 
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coordination of assembly and purchased component 
requirements through time-phased order releases and 
the reduction of setups through the aggregation of 
common part requirements. To obtain a basic 
understanding of MRP systems, you may refer to 
Vollmann et al. [1] and Sipper and Bulfin [2]. Lot 
sizing issues have been studied extensively; however, 
it is not clear how relevant the results are to MRP 
environments. MRP lot sizing research should be based 
on stochastic, multi-item, capacity-constrained 
assumptions with setup times. Time-phased order 
releases are also relevant since they affect downstream 
inter-arrival time variability and therefore influence 
queuing behavior. Finally, assembly requirements 
further complicate analysis since part coordination 
becomes an issue. Karmarkar [3] provided some 
excellent insights on lot sizing under capacity 
constraints. 

Molinder [4] provided an example, in which safety 
stock and safety lead times were examined. Actual 
lead-time distributions within the production 
environment are treated as being independent of any 
forecasting or master scheduling inputs. Finished 
product can be assumed to be completed exactly on the 
due date dictated by the master production schedule 
(MPS). In a study of forecasting effectiveness, Fieldes 
and ingsman [5] applied an MPS generated on the basis 
of forecasts, safety stock, and lot-sizing policies. 

Enns [6] focused on the effects of lot size and 
planned lead-time settings in a shop producing 
assembled products. Their results show that the 
required inventory levels can be minimized by 
selecting the proper lot sizes and by using planned lead 
times to control delivery performance. Biggs [7] 
showed that the effect of lot sizing and sequencing 
rules and the interaction between these are significant 
at the significance level of 0.01. He argued that it is 
possible that particular sequencing rule may work in 
"opposite direction" to a particular lot sizing rule and 
vice versa. He also studied the interaction of priority 
rules with the capacity levels and reported that these 
are significant. He found that the critical ratio rule 
(CRR) preformed consistently well over different 
levels of capacity. Later, Goodwin and Weeks [8] 
reported that the CRR for scheduling gives consistently 
better results over a variety of criteria and with a 
variety of lot sizing rules. Collier [9] and Billington, et 
al. [10] pointed out that certain lot sizing rules may 
hurt the capacity utilization. Grasso and Taylor [11] 
studied main effects and interaction effects among four 
factors as follows; lead time, buffering alterative, lot 
size rule, and cost value on the total cost. They 

reported that main effects of each factor and the 
interaction between lead time distribution and lot size 
rule and the interaction between buffering alternative 
and cost value on the total cost are significant. Now, 
we briefly review the work where the initial decision in 
this area is modified and presented later.  

South and Stewart [12] reported their experience at 
Hix Corporation wherein the fifty percent increase in 
lot sizes and planned manufacturing lead time resulted 
in low system tardiness without increasing in WIP 
inventory costs. An intuitive explanation could be that 
the increase in lot sizes reduces the number of setups 
while releasing the shop capacity and hence leads to 
the reduction in a queue length before the processing 
centers, which leads to low tardiness. In the case of 
Hix Corporation, the effects balanced in such a manner 
that it did not increase the work in process inventory. 
Billington, et al formulated a capacity /lot size/ lead-
time problem as a mixed-integer linear programming 
problem and they suggested a product structure 
compression to reduce the problem size. Models with 
lot sizing and sequencing together become large and 
are intractable to the conventional integer 
programming techniques. Single stage optimization 
procedure such as Wagner-Whithin [13] is used due to 
its simplicity and it is likely to yield sub-optimal 
solutions when stage wise interactions are ignored. 

 
 

2   Fuzzy Rule Base 
In any diagnostic or prognostic study in meteorology 
for the application of fuzzy reasoning, there are three 
interdependent steps. A successful execution of these 
steps leads to the solution of the problem in a fuzzy 
environment; i.e. the solution procedure digests any 
type of uncertainty in the basic evolution of the event 
concerned. 

 
 

2.1  Fuzzification Review 
All meteorological events are considered as having 
ambiguous characteristics and therefore their domain 
of change are divided into many fuzzy subsets that are 
complete, normal, and consistent with each other. 
Hence, the domain of change is fuzzified. This stem is 
applied to each meteorology factor considered in the 
solution of the problem.  

 
 

Proceedings of the 8th WSEAS International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, June 19-21, 2007      209



 
 

 

2.2  Fuzzy Inference System (FIS) 
In fact, this step relates systematically pair wise all the 
factors taking place in the solution, which depends on 
the purpose of the problem. This part includes many 
fuzzy conditional statements to describe a certain 
situation. For instance, if two events X and Y are 
interactive, then they are dependent on each other. 
Conditional statements express the dependence as 
verbally without any equation, which is used in the 
classical approaches:  
 

IF X is A(1) THEN Y is B(1) 
ALSO 
IF X is A(2) THEN Y is B(2) 
ALSO 
IF X is A(3) THEN Y is B(2) 
ALSO 
IF X is A(n) THEN Y is B(n) 

where A(1), A(2),: : :, A(n) and B(1), B(2),: : :, B(n) 
are the linguistic description of X and Y respectively. 
They are fuzzy subsets of X and Y that cover whole 
domain of change of X and Y. The fuzzy conditional 
statements in Eq. (1) can be formalized in a form of the 
fuzzy relation R(X,Y) as R(X,Y)=ALSO (R1; R2; R3; 
: : :; RN) Where, ALSO represents a sentence 
connective which combines Ri's into the fuzzy relation 
R(X,Y), and Ri denotes the fuzzy relation between X 
and Y determined by the i-th fuzzy conditional 
statement. After having established the fuzzy 
relationship R (X,Y), then the compositional rule 
inference is applied to infer the fuzzy subset B for a 
given fuzzy subset A for X as B=AOR(X,Y) where "o" 
is a compositional operator. 

 
 

2.3   Defuzzification 
The final result from the previous step is in a form of 
the fuzzy statement in order to calculate the 
deterministic value of a linguistic variable Y. The 
defuzzification method must be applied as follows 
[10]: 
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where, p(x) is a fuzzy basis function and y is a 
particular value of the linguistic variable. yj is the 
support value, in which the membership function 
reaches its maximum grade of membership. L and M 
are a number of rules and inputs respectively. In this 
paper, the center-average method is selected and 
applied to defuzzify the proposed problem. 

 
 

3   The Proposed Approach 
When manufacturer wants to begin production, it is 
important to estimate lead time accurately. Also, 
estimated planned lead time will affect on the MRP 
and MPS respectively. After a proper estimation of 
lead time, the manufacturer is able to improve delivery 
performance into the customer. In this paper, a fuzzy 
rule base is applied in order to estimate lead time 
accurately. In the proposed fuzzy system, the history of 
vendor delivery and volume of order are considered as 
inputs. Lead time is defined as an output of the fuzzy 
system. Selecting the inputs is significant because they 
have high impact on output. Then according to real 
conditions, some linguistic rules are used to model this 
system. After fuzzification and fuzzy inference steps, 
finally based on defuzzification results, expected lead 
time will be estimated based on real conditions (i.e., 
linguistic rules),in which it is impossible to model 
them except using a fuzzy approach. 

 
4   A Typical Example 
In this section, a typical test problem is given to 
demonstrate applicability of the approach. 

 
 

4.1  Fuzzy rule base implementation  
According to the steps mentioned in Section 2, the test 
problem is implemented in MATLAB 7.0 as follows: 

 
4.1.1   Fuzzification step: 
In this step, it is required to fuzzify inputs and output 
as depicted in Figures 1 to 3 respectively.  

TABLE 1. Obtained lead time based on the fuzzy system 
  Volume of 

order 
 

History of Vendor 
delivery 

Small Medium Big 

Bad 4.4 5.0 5.6 
Medium 1.2 5.0 5.0 

Good 4.0 4.1 4.0 
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4.1.2   Fuzzy inference system 
In this section, linguistic rules are used to attain the 
objective as follows: 

• Rule 1: If history of vendor delivery is good and 
volume of order is small then lead-time is small. 

• Rule 2: If the history of vendor delivery is good 
and volume of order is medium, then lead time is 
medium. 

• Rule 3: If the history of vendor delivery is good 
or volume of order is small, then lead time is 
small. 

• Rule 4: If the history of vendor delivery is bad 
and volume of order is medium, then lead time is 
medium. 

• Rule 5: If the history of vendor delivery is bad 
and volume of order is big, then lead time is big. 

 

4.1.2   Deffuzification step 
After defuzzifing the proposed fuzzy system, estimated 
lead time will be achieved. The form of a fuzzy rule 
base is illustrated through a matrix. The number of 
fuzzy regions in the input defines the size of the matrix 
of the combined fuzzy rule base. For a two input – one 
output case, a combined rule base can be formed with a 
two-dimension matrix as shown in Figure 4. Data 
given in Table 1 illustrate the lead time value for 
various conditions. 

 
 

4.2   Discussion 
In the above well-indicated example, instead of 
considering deterministic lead time, it is estimated due 
to real conditions on the vendor delivery and order 
volume. The results show that each pair of two selected 
inputs has an impact on lead time, only exception is 
occurred when the history is medium and volume of 
order is small simultaneously. Also, it is possible to run 
a sensitivity analysis on affected parameters on lead 
time to make a good decision about lot sizing policies. 
It is clear that the obtained lead time will be used in the 
MRP system by applying available methods in the 
literature. 
 
 

5   Experimental Results 
While common methods available in the literature 
considered lead time as a deterministic and pre-
specified value, the proposed fuzzy approach emphasis 
on applying fuzzy rule based and estimating lead time 
resulting from the real conditions that may occur in the 
manufacturing environment. Also, the obtained lead 
time is considered as an input – as well as MPS- in the 
MRP system.  
 
 
5.1   Monte Carlo Simulation  
In this section, the validation of the proposed approach 
is evaluated. For this reason, simulated lead times are 
compared with lead times obtained from the fuzzy rule 
based approach. The model was tested in the cases of 
1, 2, 3, and 4 orders in an MRP system to demonstrate 
the superiority of the proposed approach. Each 
observation has obtained through 1000 simulation 
runs, based on obtained data given in Table 1. Also, 
simulated lead times are obtained after 1000 simulation 
runs due to the uniform probability distribution 
function. Finally, the summation of lead times is 

 
Fig.3. Membership function for the lead time 

 
Fig. 2. Membership function for the order volume

 
Fig. 1. Membership function for the vendor history 
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considered to compare both methods. Also, to have a 
significant insight within comparative analysis, a two-
way analysis of variance has been conducted. The 
results show that the fuzzy lead times are smaller than 
simulated lead times in all cases. As a result, when the 
number of orders in the MRP system increases, it 
seems that the existing difference between simulated 
and fuzzy lead time becomes bigger. However, as it 
was expected in both cases by considering large 
numbers of order, the summation of lead times 
becomes greater. Table 2 indicates a comparative 
analysis between fuzzy and simulated data. As 
indicated, fuzzy lead times in all observations are less 
than corresponding simulated lead times.  

 
 

 
 

 
 
 
5.2   Two-way analysis of variance (ANOVA) 
A two-way analysis of variance tests the equality of 
population's means when classification of treatments is 
by two variables or factors, which in this research the 
number of orders and the available methods are 
considered as two important factors affecting on lead 
time in the MRP system. The results of analysis of 
variance, as shown in Table 3, indicates the fuzzy 
approach is significantly different from the results 
obtained by simulation. The p-value for the approach 
effect is 0.0058. This is a strong indication that the lead 
time varies from one approach to another. Also, the p-
value for the number of orders is near to zero, which is 
also highly significant. Thus, the proposed approach 
can be used appropriately.  
 
  
6   Conclusion 
In this paper, a fuzzy lead time application to a 
material requirement planning (MRP) environment has 
been addressed. The proposed approach has used a 
fuzzy rule base to cover linguistic rules, which it would 
be happen in a manufacturing environment. In the 
proposed fuzzy system, the history of vendor delivery 
and volume of order were considered as inputs to 
estimate lead time as out put in the proposed system. 
The results showed that after the defuzzification 
process, lead time could be estimated easily on the 
basis of various input conditions and obtained results 
would be used in the MRP system by applying 
available methods in the literature.  

The approach was more reliable when the 
manufacturer wanted to estimate lead time and 
consequently MRP and master production schedule 
(MPS) more accurate. To evaluate the validation of the 
fuzzy approach, the results obtained by the proposed 
approach were compared with simulated lead times, 
both in 1000 simulation runs and 20 independent 
observations. A two-way analysis of variance 
confirmed our hypothesis significantly. Therefore, the 

TABLE 3. Two-way analysis of variance  

Source Mean square Degree of 
freedom F- statistic P-value 

Column 32.9 1 8.84 0.0058 

Row 964.11 4 64.74 0 

Interaction 6.22 4 0.42 0.79 

Error 111.69 30   

TABLE 2. Comparative analysis between fuzzy and 
simulated lead times 

Observation Number of 
order 

Fuzzy 
lead time 

Simulated 
lead time 

1 

1 

4.2 4.9 

2 4.3 5.1 

3 4.2 5 

4 4.3 4.9 

5 4.2 4.8 

6 

2 

8.5 9.9 

7 8.6 9.8 

8 8.4 10.2 

9 8.6 9.9 

10 8.5 9.8 

11 

3 

12.7 15.2 

12 12.8 14.9 

13 12.8 14.9 

14 12.7 14.8 

15 12.8 15.1 

16 

4 

17.12 19.9 

17 17 20.2 

18 17 19.8 

19 16.9 20.1 

20 17.1 19.8 

Average 10.636 12.45 
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proposed fuzzy approach can be used in MRP systems 
safely. Further research will be focused on applying 
stochastic processes to obtain lead time due to a 
probabilistic nature of MRP situations.  
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