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  Abstract— In this paper an improved algorithm for online identification of Takagi-Sugeno fuzzy rule-based 

models from I/O data streams is proposed. The TS model has evolving structure i.e the fuzzy rules can be added, 

modified or deleted automatically. Both parts of identification algorithm (unsupervised fuzzy rule-base 

antecedent learning by a recursive, non-iterative clustering, and the supervised linear sub-model parameters 

learning by RLS estimation) are developed for the MIMO case. The radius of influence of each fuzzy rule is 

calculated as an adaptive vector instead of being fixed vector, allowing different areas of data space to be 

covered. The centers and widths of membership functions initially determined by online clustering are 

optimized continuously using a gradient descent method. This feature enables the identification algorithm to 

deal with time-varying systems and non-stationary data streams. Simulation studies (using two benchmark 

problems ) and comparisons with some other online learning algorithms demonstrate that a more compact 

structure with higher performance is achieved by the proposed approach. 
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1  Introduction 
System Modeling plays an important role in many 

engineering fields such as prediction, communication 

and control. TS fuzzy models are powerful practical 

engineering tools for modeling and control of complex 

systems. They have a quasi-linear nature and utilize 

the idea of approximation of a nonlinear system by a 

collection of fuzzily mixed local linear sub-models. 

This feature enables them to approximate severe 

nonlinearity, multiple operating modes, and 

significant parameter or structure variation [1]. 

    The methods for learning TS models from data 

have two major parts: structure identification 

(estimation the number of required fuzzy rules and the 

centers and widths of their membership functions) and 

parameter identification (learning the free parameters 

of linear sub-models of the consequents). With fixed 

antecedent parameters, the TS model is transformed to 

a  linear model with some parameters which are 

calculated  by RLS algorithm. 

    Real-time implementation of offline identification 

methods is very difficult or even impossible due to 

their time-consuming re-training procedures. High-

volume and non-stationary data streams (produced for 

example in large industrial processes ) can not be 

analyzed in batch mode methods such as back-

propagation or genetic algorithm. Real-world 

engineering problems such as intelligent systems 

require important features such as fast and  online 

incremental adaptive learning, open structure 

organization, ability for memorizing information, 

knowledge acquisition and self-improvement [7]. 

These requirements lead to development of evolving 

fuzzy neural networks (EfuNN), evolving 

connectionist systems and evolving rule-based takagi-

sugeno (eTS) models.  

    The eTS learning algorithm is based on a recursive 

evaluation of the informative potential of new data 

points and the focal points of the rules[1]. The 

algorithm updates the number of rules and their 

antecedent and consequent parameters continuously 

and dynamically. Outliers have no chance to become 
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rule centers. It is important to note that learning could 

start without a priori information and only one data 

sample. Therefore this approach is very useful in real-

time control, adaptive control, robotic, diagnostic 

systems and data acquisition [2]. 

    In [1], an approach for online learning of MISO 

(Multi-Input Single-Output)TS fuzzy models is 

proposed. the extension of this algorithm into MIMO 

(Multi-Input Multi-Output) case is demonstrated in 

[2]. In some situations the number of fuzzy rules 

grows dramatically because their criteria do not 

consider the conditions where some inefficient fuzzy 

rules need to be deleted. Reference [3] presents an 

adaptive fuzzy modeling and control scheme. Both [1] 

and [3] consider the radius of influence of each fuzzy 

rule as a constant vector that is determined initially by 

the user. To the authors' experience, the radius of each 

cluster should not kept constant, because the 

distribution of data points significantly changes in 

dynamic systems. This concept is considered in this 

paper. Even if the radius of influence of some clusters 

can be constant, due to the lack of priori information 

about the distribution of data points in clusters it is 

not easy to determine it at the start of algorithm 

without clustering.  

    Most of structure identification methods are based 

on data clustering such as fuzzy C-means clustering, 

mountain clustering, and subtractive clustering. These 

approaches require all input-output pairs of data to be  

ready before starting the identification process.  A few 

online clustering methods can be found such as one 

presented in [6], but it is suitable for a special neural 

fuzzy system only (self-constructing neural fuzzy 

inference network). 

    In [4] a nonlinear transversal fuzzy filter with 

online clustering is proposed. The clustering method 

needs some constants to be predefined. These 

constants significantly affect the number of rules, but 

there is no straightforward way to determine them. In 

[5] and [6], dynamic fuzzy neural networks (DFNN) 

are presented. However, in these methods all past 

training data must be stored. Therefore, heavy 

memory and computation burden are unavoidable. 

    In this paper, a modified online subtractive 

clustering is used to determine the number of rules 

and the center and radius of influence of each new 

fuzzy rule. To reach a precise and efficient model, the 

modeling approach needs to be able to handle all the 

necessary operators as adding , removing , and 

modifying  . But, most of the existing methods either 

do not consider all the aforementioned operators 

(especially the removing one) or suffer from lack of a 

good mechanism to handle the operators. In this paper 

,  heuristic criterions are proposed to add, modify or 

delete the rules. The centers and widths of all 

membership functions are updated using the  gradient 

descent (GD) method.  

   This paper is organized as follows. In section 2 we 

formulate the MIMO TS model. An online 

identification method for   models with some new 

aspects is presented in section 3. Numerical examples 

are provided in section 4 to illustrate the performance 

of the presented method. Concluding remarks are 

given in section 5. 

 

2  General description of  MIMO TS 

Model – a review 
 

   TS models can be described as a set of fuzzy rules 

of the following form: 

1 1: ( ) ..... ( )

; {1, }

i i n in

i iT
e

IF is AND AND is

THEN i R

R x A x A

y x π= =
                   (1) 

R is the number of  fuzzy rules, x= [x1 , x2 , … , xn]
T
 

denotes the input vector, xe= [1;x]   is extended input 

vector, to consider a free parameter of consequent 

part. Aij denote the antecedent fuzzy sets, y
i
 is the 

multidimensional output vector of the i-th linear sub-

model and πi
  are its parameters(assuming m output 

variables ): 
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                                         (3) 

   We use Gaussian antecedent fuzzy sets because it 

ensures greatest possible generalization of the 

description ( it assumes normal distribution of data in 

a clusters ): 
2

( ) exp ; 1: ; 1:
x cij ij

i R j nx jij
ij

µ
σ

 
 
 
 
 

 −
= − = =  

 

        (4) 

Where cij and   σij are the center and width of the 

Gaussian function that represents the degree of 

belongness of xj to the i-th cluster. 

   Linearity of consequent part sub-models is a very 

useful characteristic , especially for controller design. 

For example, in the model predictive controllers 
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which are extensively being used in process control, 

an optimization problem should be solved in each 

sampling period. If we use the nonlinear model for the  

process, the optimization problem becomes nonlinear 

and complicated , which has no explicit solution and 

should be solved by time-consuming iterative 

procedures. By using linear model of the process, 

there are several explicit solutions in the form of 

program codes for a linear optimization problem 

which is encountered. Likewise, controller design for 

a linear system is easier than a nonlinear ones. 

    Activation level of the rules are defined as 

Cartesian product of  a  respective fuzzy sets for this 

rule: 

1

( ) ( )
n

ii ij
j

x xϕ µ
=

= ∏                                                        (5) 

The normalized activation level of the i-th rule is 

calculated as follows: 

1

i
i R

k
k

ϕ
λ

ϕ
=

=

∑

               (6) 

  The level of contribution of the i-th linear sub-model 

to the overall output of the TS model is proportional 

to λi The  j-th output variable of TS model is 

calculated by weighted averaging of individual rules 

contribution : 

1

; 1:
R

i
ij j

i

j my yλ
=

= =∑                                         (7) 

 

3  Improved online identification of eTS 

model 
 

    Essential parts of online learning of eTS models are 

recursive clustering, derivation of a gradually 

evolving rule-base and weighted RLS algorithm. Basic 

stages of the procedure are described. 

3.1 Rule-base initialization 

    At the start of learning, the first data point is 

considered as the focal point of the first cluster. Its 

potential is assumed equal to one. The covariance 

matrix C  is initialized with large values,Ω , in its main 

diagonal: 
*
1 11

1 1 1

1; 1; ; ( ) 1

0;

kk R

I

px x c

Cθ π

= = = =

= = = Ω
              (8)                   

Where c1 is the center of first cluster and *
1x  is the 

focal point of first rule( a projection of c1 on the axis 

x) 

 

3.2  Calculating potential of new data point (start 

the loop) 

    At the next time step ( 1)k k= + , the potential of new 

data point (z
k
)is calculated by a cauchy type function 

of first order: 
1

1 2
( ) ; 2,3,...

1 1

(9)
1

1 ( )
1

kk

k n m
j k
lk

l j

p z d
k

−
− +

= =
= =

 
+ ∑ ∑ − 

where j l k
j jlkd z z= −  . 

    Starting from (9) and expressing the projection of 

distances in an explicit form for the time k , recursive 

formula of the potential is derived as follows, which is 

very important for online implementation of the 

learning algorithm: 
( 1)

( )
( 1)( 1) 2

kk
k k k

k

k
p z

vω τ
−

=
− + + −

                                (10) 

Where 

( ) ( )
1 12 2

1 1 1 1 1

; ; ;
n m k n m n m k

kkk lk l
j j j jk k k j j

j l j j l
z zz z ββω τ ν

+ − + + −

= = = = =
= = = =∑ ∑ ∑ ∑ ∑

It is seen that k
jβ and τk are related to the previous data 

samples. in order to reduce the computational load, 

these variables are calculated recursively: 
2 11

1
1

;( )
n m

k k kk
jjk k jj

j
zz β βτ τ

+ −−
−

=
= + = +∑                     (11) 

 

3.3  Updating the potentials of the centers 

    Definition of potential depends on the distance to 

all data points, including new data point. Therefore 

the new data point k
z affects the potential of the 

centers of existing clusters. Using (9), the potentials 

of the focal points of the existing clusters are updated 

recursively: 

1

1 1

( 1) ( )
( )

[ 2 ( ) ( )*

lk
lk k

l l ik k

k

k

p c
p c

p pc c c z

−

− −

−
=

− + + −

                (12) 

 

3.4 Rule base evolution 

    The potential of k
z is compared to the potential of 

the centers of existing clusters and a decision whether 

to add, modify or delete a rule is made  as follows:  

 

• To add or modify(replace) the rule:  

    IF the potential of the new data point is higher than 

the potential of existing cluster centers:    

Proceedings of the 8th WSEAS International Conference on Fuzzy Systems, Vancouver, British Columbia, Canada, June 19-21, 2007      134



 

 

( ) ( ) ; 1:k
ik k

i Rp p cz > =                                         (13) 

AND   z
k
 is close to the j th cluster center: 

m in 0 .5

jc

δ <                                                     (14) 

Where *
min

1
min
R

k
i

i
x xδ

=
= −  is the distance from 

z
k
 to the closest existing rule center ,THEN z

k
 

replaces this center: 
* ; ( ) ( )k k
j jk kp px x c z= =                                      (15) 

   By this method, we replace a less informative rule 

with a more informative one. Note that the definition 

of δmin is done around x  instead of z. Therefore, it will 

be impossible for a rule with similar antecedents to 

exist in rule-base. Such rules could exist according to 

the definition of  δmin used in [1-2], if their 

consequents are different. such rules lead to 

contradiction in their linguistic interpretation. 

   IF only condition(13) is satisfied, THEN z
k
 is added 

to the rule-base as a new center and a new rule is 

formed with a focal point based on a projection of this 

center on the axis x : 
*1 ; ; ( ) ( )k k

kR Rk
R R px x c P z= + = =                         (16) 

 

• To delete the  redundant  rule   
   At this stage, suppose that we have R ′ rule. let 

mind as : 

min

2
min exp ; 1: 1; 2:

i l

i l

i R l R
c c

d
σ σ

  −  ′ ′= − = − =   +   

 (17) 

and 
max

1

( )max
R

ik
i

p p c
=

= . Suppose ca and cb are 

the two centers  with the closest distance and 

( ) ( )a bk kp pc c< . 

IF min

max

( )
1

ak

a

p cd

pσ
+ <  THEN the a-th rule is deleted 

from the rule-base. 

 

3.5  Adjusting  consequent parameters 

    Structure identification needs an initial set of 

parameters for model verification. Therefore, structure 

and parameter identification can not be completely 

separated. It is possible to determine the initial 

consequent parameters using offline training or chose 

them arbitrarily. for a fixed rule-base and antecedent 

parameters, the rule consequent form a set of linear 

equations leading to a linear regression problem, 

which can be solved by recursive least square 

estimation. 

   During continuous learning, normalized activation 

levels of rules change, which affects past and new 

data. Therefore, straightforward application of RLS 

and WRLS is not correct. To solve this problem, 

Covariance matrices and parameters are reset once an 

existing rule is modified/deleted or a new rule is 

added. 

Vector form of the output is presented as  

1
ˆ

T
kk ky ψ θ+ =                                                               (18) 

   Where ψ  is a vector of inputs that are weighted by a 

normalized activation levels of the rules and θ is a 
vector composed of the linear sub-model parameters: 

1 2[ , ,..., ]
TT T T

k Rθ π π π=                                                   (19) 

1 2[ , ,....., ]
TT T T

e e R ek x x xψ λ λ λ=                                       (20) 

For global optimization, we have: 

 ( )2
1

N
T

G kk
k

yJ θψ
=

= −∑                                                  (21) 

Consequent parameters vector θ that minimize JG can 

be estimated by the following RLS algorithm: 

1 1
( )ˆ ˆ ˆT

k k kkk k kyC ψ ψθ θ θ− −= + −                               (22) 

1 1
1

1

; [1, ]
1

T
k kk k

k k T
kk k

k N
C C

C C
C

ψ ψ

ψ ψ
− −

−
−

= − =
+

                    (23) 

Where 
1

0θ̂ =  and C1= ΩΙ.. 

When a new rule is added, the RLS algorithm is reset 

in the following form: 

1. Consequent parameters are calculated as: 

1( 1) 2( 1) ( 1) ( 1)[ˆ , ,......, , ]ˆ ˆ ˆ ˆ
TT T T T

k k R k R kk π π π πθ − − − +=                

(24) 

where ( 1) ( 1)ˆ ˆ
R

R k i i k
i

π λ π+ −=∑ . 

2. Covariance matrices reset as follows: 

 

11 1 ( )

( )1 ( ) ( )

... 0 ... 0

... ... ....... .... .... ...

... 0 .... 0

0 0 0 .... 0

.... .... .... .... .... 0

0 0 0 0 ....

R n m

R n m R n m R n m
kC

ρ ρ

ρ ρ

α α

α α

+

+ + +

 
 
 
 
 =
 Ω
 
 
 Ω 

    (25) 

αij is an element of previous covariance matrix and 
2

2

1R

R
ρ

+
= . 
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   When a rule is replaced with another rule, the 

covariance matrix and consequent parameters of the 

new rule are taken from previous rule without change. 

It is quite straightforward how to reset C and θ  when 

a rule is deleted. 

   In the case of local optimization, θ  should minimize 

the following cost function: 

1
( ) ( )

R TT T
iL i i

i
Y YJ X Xπ π

=
= ∑ − −Λ                              (26) 

The local parameter estimation is based on WRLS: 

 

( 1) 1 1 1 1( )( )ˆ ˆ ˆT
ik i k ik ek i k ek ikkyC x x xπ π λ π− − − − −= + −           (27) 

1 ( 1) 1 1 ( 1)
( 1)

1 1 1 1

( )

1 ( )

T
i k i k ek ek i k

ik i k T
i k ek ik ek

x C x x C
C C

x x C x

λ

λ
− − − − −

−
− − − −

= −
+

        (28) 

 

   Initial conditions are 1 10 ;π̂ = =Ω; Ci1=ΩI. the 

covariance matrices are separate for each rule in this 

case: 
( ) ( ) ; [1, ]n m n m

ik i RC R
+ × +∈ =                                 (29) 

 

   When a new rule is added, its consequent 

parameters are determined by (24). Also we have: 

C(R+1)k=ΩI. Parameters of the previous rules are 

inherited (πik=πi(k-1), Cik=Ci(k-1) ; i=[1,R]) . Parameters 

of all rules remain unchanged if a rule is replaced. 

When a rule is deleted, its parameters are deleted too. 

 

3.6  Calculating radius of new rule 

    The width of fuzzy model membership functions is 

significant for its generalization. if the width is less 

than the distance between the adjacent inputs which 

means underlapping , the neuron does not generalize 

well. However, if the width is too large, the output of 

the  sub-model may always be large (near 1) 

irrespective of inputs and the partition which  makes 

no sense in this case. Therefore, the width must be 

carefully selected so as to ensure proper and sufficient 

degree of overlapping [6]. In our method, The width 

of the j-th membership function of newly generated 

rule is computed as follows : 

{ }
( 1)

max ,
*

j jaj bj

R j n
S

c cz z
σ +

− −
=                         (30) 

   Where ca and cb  are the two nearest neighboring 

centers of the clusters adjacent to the receptive field, 

where the newly arrived pattern is located,. Also S is 

an orbitary  constant (1.5 2.5)S< < and n  is the input 

dimension.  

G. Optimization of membership function parameters 

    Contrary to the conventional fuzzy-neural network 

based approaches, consequent parameters of the eTS 

model can be computed without the BP based 

algorithms [4]. Because the eTS model is linear after 

the corresponding centers and the widths are 

allocated. The scheme of parameters determination 

consist of two phases, during the forward pass, 

parameters of membership functions are assumed to 

be fixed and the free parameters of linear sub-models 

are determined. during the backward pass , the centers 

and widths will be optimized by a gradient descent 

method.[13] 

    To optimize the centers and widths, we adopt the 

following cost function  

( )22

1 1

( ) ˆ( ) ( )
N N

k k

E k y k y ke
= =

= = −∑ ∑                                (31) 

   Where ( )y k and ˆ( )y k are the real and estimated 

outputs.The centers will be updated as follows: 

ij ij ijc c c= + ∆                                                   (32) 

( )( ) 2
1

2 ˆ ˆ ˆ

i
ij c c

ij i ij

m i iji
c i r r r r

r ij

E E y

y
c lr lr

c c

x c
y y y ylr

λ
λ

λ
σ=

∂∂ ∂ ∂
∆ = − = −

∂ ∂ ∂ ∂

 − 
 = − − 
   

∑

           (33) 

And the widths are updated as follows: 

ij ij ijσ σ σ= + ∆                                            (34) 

( ) ( ) ( )2
3

1

ˆ ˆ ˆ2

i
ij

ij i ij

m j iji
i r r r r
r ij

E E y

y
lr lr

x c
y y y ylr

σ σ

σ

λ
σ

σ λ σ

λ
σ=

∂∂ ∂ ∂
∆ = − = −

∂ ∂ ∂ ∂

 
  

= − −  
  

 

−
∑

   (35)   

Where lrc and lrσ are the learning rates of centers and 

widths respectively. 

   For the linear regression model in the consequent 

parts, the second order statistics of the input signals  

in  (18)  is not only decided by the model input , but 

also the nonlinear mapping which depends on the 

membership functions. In other words, the input of the 

linear regression models are non-stationary which is 

made possible by adjusting of the centers and widths 

of membership functions. To optimize the model, the 

recursive algorithm has to seek the optimal weights θ  
and keep track of changing position of the optimal 

point as well. To prevent deteriorating the 
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performance, the parameters of the membership 

functions are updated in each  p  sample period, not in 

each sampling period. p is a constant which depends 

on the number of free parameters in the consequent 

part. Normally p is set to 2µ(n+1) because the RLS 

algorithm is convergent in the mean value for every 

time-step p greater than 2µ(n+1)  [4].Therefore, the 

centers and widths are updated as follows: 

;
p p

ij ij
ij ij

E E
c

c
σ

σ
∆ = − ∆ = −

∂ ∂

∂ ∂                               (36) 

where ( )2ˆ( ) ( )
k p

p
i k

y i y iE
+

=
= −∑ . 

The algorithm then returns to 3.2  

 

4  Simulation results 
 

Example 1: Nonlinear dynamic system identification: 

the nonlinear dynamic plant is described as: 

2 2

( ) ( 1)[ ( ) 2.5]
( 1) ( )

1 ( ) ( 1)

y t y t y t
y t u t

t ty y

− +
+ = +

+ + +
                     (37) 

  The input/output data of this plant are widely used to 

verify the performance of  system identification 

procedures. The corresponding fuzzy model can be 

represented by  

ˆ( 1) ( ( ), ( 1), ( ))y t f y t y t u t+ = −                                       (38) 

   Where (.)f  is unknown. Our objective is to find an 

evolving TS fuzzy model of f(.) by using the 

algorithm proposed in section 3. The input signal is 

chosen as ( ) 0.5sin(2 / 5) 0.5sin(2 )u k k kπ π= + .the results 

and the comparison with some other methods are 

shown in figure 1 and table 1 respectively. 

   Table 1 confirms that our model is of lower error 

(RMSE),    while its number of parameters is much 

lower than the number of parameters of the other 

online models. 

 

Example 2: Mackey-glass time series prediction: This 

series is a well-known benchmark problem for testing 

system identification algorithms. It is generated by the 

following equation 

10

0.2 ( )
( ) 0.1 ( )

1 ( )

x t
x t x t

tx

τ

τ

−
= −

+ −
ɺ                                         (39) 

We assume (0) 1.2 , 17x τ= = . The aim is to identify the 

following  prediction model: 

 

( 85) [ ( ), ( 6), ( 12), ( 18)]x t f x t x t x t x t+ = − − −                  (40) 

   Figure 2 shows the Rule-base evolution and 

estimation error. In this section, non-dimensional error 

index (NDEI) is defined as a ratio of  RMSE over the 

standard deviation of target data. The comparison of 

the proposed model with other models based on 

different online identification methods is shown in 

table 2.  

   It is clearly seen in table 2 that our model is more 

accurate with  least number of parameters. Although 

the NDEI of some other models (such as Denfis with 

883 fuzzy rules) is relatively close to the NDEI of our 

model, but the number of parameters of these models 

are much higher. 

 In order to test the robustness of the eTS model a 5% 

random noise has been added to the standard Mackey-

glass time-series. Our model has evolved toonly  4 

rules and NDEI=0.5189 which means that the noise 

 

Table 1 

  comparison of structure and performance 

 
Algorithm/authors neurons

/ rules 

RMSE Para-

meters 

DFNN[5] 6 0.0283 48 

GDFNN[6] 6 0.017 - 

OLS (s.chu,.,1991) 65 0.0288 326 

RBF-AFS 

(cho,..,1996) 

35 0.1384 280 

Adaptive model[3] 8 0.0849 - 

Our method 2 0.0092 8 

 

0 50 100 150 200 250 300
-1

0

1

2

3

 
samples 
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Table2    

comparison of structure and performance 

 

   has no effect on the number of rules (clusters). The 

ability of proposed algorithm to reject the noise and 

finding the appropriate number of clusters despite the 

noise is an important characteristic especially in 

classification problems and pattern recognition. 

 

5  Conclusion 
   An improved approach to online identification of 

evolving TS fuzzy models is proposed. Heuristic 

criterions are used in online potential-based 

subtractive clustering to evolve the rule-base. The 

centers and widths of membership functions are 

updated using identification error and GD method. 

The identification algorithm can work without a priori 

information of a process and/or any predefined 

constants. Furthermore, the model is obtained using 

I/O data of normal operation modes and there is no 

need to excite the system with persistent exciting 

signals (such as PRBS), which can be practically 

difficult, expensive or dangerous. Its reason is that the 

new operating modes (areas) are easily and rapidly 

represented by some new rules. Our evolving fuzzy 

model is a promising candidate for many real-time 

control , adaptive & model predictive control, as well 

as prediction, signal processing, diagnostic systems, 

data acquisition, and artificial intelligence due to its 

higher precision, compact structure (with low number 

of needed parameters) and adaptive nature. 
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Algorithm/authors Rules/ 

units 

NDEI 

RAN(kasabov&song,2002) 113 0.0373 

ESOM(kasabov&song,2002) 114 0.32 

ESOM(kasabov&song,2002) 1000 0.044 

EfuNN (kasabov&song,2002) 193 0.301 

EfuNN (kasabov&song,2002) 1125 0.0904 

Denfis (kasabov&song,2002) 883 0.033 

Denfis (kasabov&song,2002) 58 0.276 

eTS[1] 113 0.095 

eTS (victor&durado , 2003 ) 9 0.38 

Fuzzy Transversal filter[4] - 0.0597 

SONFIN [c.juang & c.lin 

,1998] 

9 0.0796 

Neural gas 1000 0.062 

DFNN[5] 5 0.0584 

OLS 13 0.0698 

RBF-AFS 16 0.0473 

Our method 4 0.0117 
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