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Abstract: For any investor on stock market it is very important to predict possible loss, depending on if he holds "long" 
or "short" position. By forecasting stock risk investor can be ensured "a priori" from estimated market risk, using 
financial derivatives, i.e. options, forwards, futures and other instruments. In that sense we find financial econometrics 
as the most useful tool for modeling conditional mean and conditional variance of nonstationary financial time series. 
Besides the assumption of normal distributed returns does not represent asymmetry of information influence, normal 
distribution also is not the most appropriate approximation of the real data on the stock market. Using assumption of 
heavy tailed distribution, such as Student's t-distribution in GARCH(p,q) model, it becomes possible to forecast 
market risk much more precisely. Even more, using Student's distribution with non-integer degrees of freedom leads 
approximation to minimal differences between theoretical and real values. Such modeling enables time-varying risk 
forecasting, because the assumption of constant risk measures between stocks is unrealistic. The complete procedure 
of analysis has been established using real observed data at Zagreb Stock Exchange. For this purpose daily returns of 
the most frequently traded stocks from CROBEX index is used. 
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1   Introduction 
Value at Risk (VaR) has become the most common 
measure that financial analysts use to quantify market 
risk. Even so VaR is proposed, by Basel Acords, as 
the basis for calculation of capital requirements for 
risk hedging. In category of parametric models the 
most are used GARCH(p,q) models in forecasting 
conditional mean and conditional variance within VaR 
framework. During optimization procedure it is 
important to take into account, not only first two 
moments, but also skewness and kurtosis of empirical 
distribution. 

Unfortunately the assumption that the returns are 
independently and identically normally distributed is 
unrealistic. 

Furthermore, empirical research about financial 
markets reveals following facts: 
� financial return distributions are leptokurtic, i.e. 

they have heavy tails and a higher peak than a 
normal distribution, 

� equity returns are typically negatively skewed and 
� squared return series shows significant 

autocorrelation, i.e. volatilities tends to cluster 
Returns from financial instruments such as exchange 

rates, equity prices and interest rates measured over short 
time intervals, i.e. daily or weekly, are characterized by 
high kurtosis.  

The complete procedure of analysis is established 
using daily observations of Pliva stocks as the most 

frequently traded stock from CROBEX index at Zagreb 
Stock Exchange. If the distribution of returns is heavy 
tailed, the VaR and conditional Value at Risk (CVaR) 
calculated using normal assumption differs significantly 
from Student's t-distribution. As it's known Student's 
distribution belongs to family of extreme value 
distributions. In case of volatility modeling and CVaR 
estimating of Pliva stock returns it's found that kurtosis 
and degrees of freedom from Student's t-distribution are 
closely related. 

Statistical significance of existing heavy tailed 
distribution has been shown by Q-Q plot and tested using 
Jarque-Bera test. 

 

2   Extreme value diagnostics 
To identify outliers and another extreme values Box and 
Whisker plot has been used. 

From Figure 1. outliers can be identify as Pliva returns  

which deviates from quartiles more than ( )132

3
QQ − . The 

extreme values are Pliva returns which deviates from 
quartiles more than ( )133 QQ − . 

Extreme values from Box and Whisker plot are 
perceived as circles with plus sign on both side of 
distribution. 

These extreme values and outliers are cause of 
existence fat tailed distribution. 
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Figure 1.  
Box and Whisker plot of Pliva returns 
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Source: According to ZSE 

 
There are various analytical and graphical methods to 

detect heavy tails from observed distribution. The most 
common used are Jarque-Bera test, while Q-Q plot 
graphically determines fat tails. 

 
Figure 2. 

Q-Q plot of Pliva stock returns distribution 
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   Source: According to ZSE 
 
In table 1. essential statistics are presented. 
 
Table 1. 
Essential statistics of Pliva stock returns distribution 

   stats |  plivaret 

---------+---------- 

    mean |  .0002185 

     min |  -.123698 

     max |   .088411 

skewness | -.0651446 

kurtosis |  7.615428 

      sd |  .0181509 

    -------------------- 
Source: According to ZSE 

Each of shape measures, i.e. skewness and kurtosis are 

tested separately, indicating that skewness isn't 
statistically significant whereas excess kurtosis of 4.6154 
is significantly greater than 3. In general, joint test shows 
that null hypothesis of normality distribution assumption 
can't be accepted. This joint test is presented as Jarque-
Bera test in table 2. 

 
Table 2. 

Normality test of Pliva return distribution 
 

Skewness/Kurtosis tests for Normality 
                                                 ------- joint ------ 

    Variable |  Pr(Skewness)   Pr(Kurtosis)      chi2(2)    Prob>chi2 

-------------+------------------------------------------------------- 

    plivaret |      0.781         0.000          103.70       0.0000 

Source: According to ZSE 
 
From results presented in table 2, it's obvious that 

skewness, which is very close to zero, is not statistically 
significant at empirical p-value of 78.1%. From the other 
side high kurtosis (7.6154) is statistically significant. 
According to joint chi-square test null hypotheses of 
normality can not be accepted.  

 

3   Degrees of freedom estimation using 

method of moments 
In practice, the kurtosis is often larger than six (which is 
confirmed in this empirical example), leading to 
estimation of non-integer degrees of freedom between 
four and six. Thus, degrees of freedom can easily be 
estimated using the method of moments. 

Generally, there are three parameters that define a 
probability density function (pdf): 

� location parameter, 
� scale parameter and 
� shape parameter. 
The most common measure of location parameter is 

the mean. The scale parameter measure variability of pdf, 
and the most commonly used is variance or standard 
deviation. The shape parameter (skewness and/or 
kurtosis) determines how the variations are distributed 
about the location parameter. 

The density of a non-central Student t-distribution has 
the following form: 
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where µ  is location parameter, β  is scale parameter and 

df is a shape parameter, or degrees of freedom and ( )⋅Γ  

is gamma function. Standard t-distribution 
assumes 0=µ , 1=β , with integer df. However, there are 

no mathematical reasons why the degrees of freedom 
should be an integer. Even so, the degrees of freedom can 
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be estimated using method of moments, which means that 
kurtosis and degrees of freedom are closely related: 

43
4

6
>∀+

−
= df
df

k .   (2) 

So, when empirical distribution is leptokurtic, then 
Student's t-distribution with parameter 304 ≤< df  

should be used to allow heavy tails of high kurtosis 
distribution. 

Second and fourth central moments are given as: 
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with excess kurtosis (greater then 3): 
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Hence, we may apply method of moments to get 
consistent estimators: 
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where variance from sample 2σ  is biased estimator of 
scale parameter β . 

According to equations (2) to (5) estimated degrees of 
freedom equal 5.3. Thus, non-integer degrees of freedom 
are used: 
• during optimization of likelihood function to 

estimate GARCH parameters, within quasi-Newton 
algorithm, and 

• to precisely calculate left percentile of heavy tailed 
distribution for VaR and CVaR estimation. 

 

4 Identifying ARCH and leverage effects 
Before we continue to create the model to capture 
volatility of Pliva returns it is necessary to investigate if 
there is asymmetry in volatility clustering, i.e. if there is 
leverage effect. The tendency for volatility to decline 
when returns rise and to rise when returns fall is called 
the leverage effect, i.e. "bad" news seems to have a more 
effect on volatility than does "good" news. 

A simple test to investigate the leverage effect is to 
calculate first-order autocorrelation coefficient between 
lagged returns and current squared returns: 
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Table 3. 

Testing for leverage effects 
 
Correlations 
 

 Laged Pliva 
returns 

Squared  
Pliva returns 

Pearson Correlation 1 ,030 

Sig. (2-tailed)  ,328 

Lagged Pliva 
returns 

N 1089 1089 

Pearson Correlation ,030 1 

Sig. (2-tailed) ,328  

Squared Pliva 
returns 

N 1089 1090 

Source: Tested according to data on ZSE 
 

It can be concluded that there is no asymmetric volatility 
clustering of Pliva returns at p-value of 33%, because the 
above autocorrelation coefficient is positive and it is not 
significantly different from zero. 
 
Figure 3. 

Pliva's stock returns from June 2002 to October 2006 
(1090 trading days), ACF of returns, ACF and PACF of 

squared returns 
 

Daily Pliva stock returns
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From figure 3. it's obvious that there is significant 
autocorrelation in squared return series of Pliva stocks 
for almost each time lag. It means that return series 
contain ARCH effects. These ARCH effects are also 
tested using Lagrange multiplier test, which results are 
given in table 4. 
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Table 4.  
Lagrange multiplier test 

------------------------------------------------- 

Test for ARCH Effects: LM Test 

Null Hypothesis: no ARCH effects 

 

Test Stat 68.8194 

  p.value  0.0001 

 

Dist: chi-square with 30 degrees of freedom 

Total Observ.: 1090 

------------------------------------------------- 

Source: Tested according to data on ZSE 
 
From table 4. it can be seen that variance is 
heteroscedastic because the square unexpected returns 
follows autoregressive process. Even more LM test value, 
for large samples, is significant at 0.01%. It means that 
variance is time-varying. 
 

5 Specification of GARCH(p,q) model and 

parameter estimation by quasi-Newton 

algorithm 
In mean equation constant is entered as regressor, 
because ACF of Pliva stock returns didn't show statistical 
significance for any time lag. If there is significant 
autocorrelation in returns, best fitted ARMA models are 
usually used, following Box-Jenkins procedure. It has 
been shown that ARCH(p) process with infinite number 
of parameters is equivalent to much generalized ARCH 
process called GARCH(1,1). As the time lag increases in 
an ARCH(p) model it becomes more difficult to estimate 
parameters. Besides it is recommended to use 
parsimonious model as GARCH(1,1) that is much easier 
to identify and estimate. 

In table 5. estimated parameters of GARCH(1,1) 
model are presented as well as appropriate diagnostics 
test. 

 
Table 5. 

Estimated GARCH(1,1) model 
------------------------------------------------------ 

Estimated Coefficients: 

               Value  Std.Error t value   Pr(>|t|)  

       C -0.00018119 0.00042886 -0.4225 0.33637565 

       A  0.00005835 0.00001597  3.6533 0.00013564 

 ARCH(1)  0.22614940 0.05345972  4.2303 0.00001265 

GARCH(1)  0.63441794 0.07000522  9.0624 0.00000000 

------------------------------------------------------ 

Information criteria: 

AIC(4) = -5876.871 

BIC(4) = -5856.895 

------------------------------------------------------ 

Normality Test: 

 Jarque-Bera P-value Shapiro-Wilk P-value  

        1037       0       0.9587       0 

------------------------------------------------------ 

Ljung-Box test for standardized residuals: 

 Statistic P-value Chi^2-d.f.  

     9.625  0.6489         12 

------------------------------------------------------ 

Ljung-Box test for squared standardized residuals: 

 Statistic P-value Chi^2-d.f.  

     6.637  0.8807         12 

------------------------------------------------------ 

Lagrange multiplier test: 

   Lag 1  Lag 2  Lag 3 Lag 4   Lag 5  Lag 6   Lag 7 

 -0.9236 -1.078 -1.012 0.962 -0.5799 0.3408 -0.3561 

  TR^2 P-value F-stat P-value  

 9.191  0.6865 0.8427  0.7085 

------------------------------------------------------ 

Source: Estimated according to data on ZSE 
 
Results from diagnostics test indicates that there are 

no ARCH effects and no autocorrelation of standardized 
residuals left. Parameters in table 5. are estimate using 
BHHH (Berndt, Hall, Hall, Hausman) algorithm within 
quasi-Newton optimization. Maximization of likelihood 
function procedure is defined by the iteration formula: 
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In equations (7) ii gH 1−   is the gradient vector 
premultiplied by the inverse of the Hessian 
approximation, which determines the direction in i-th 
iteration. Scalar iλ  is step size which in each iteration 

provides an increase in log-likelihood function. By 
assumption of Student's distribution log-likelihood 
function has following form:  
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Figure 4. 
Maximization of likelihood function 

 
 
 
 
 
 
 
 
 

 
 
 

 
Source: According to data on ZSE 
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According to results presented in table 5. estimated 
model has following form: 
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In system (9) residuals tε , i.e. innovations, are defined 

with tu  by assumption of symmetric Student's 
distribution. 

Sum of parameters ARCH(1)+GARCH(1), according 
to equations (9), indicates that there is persistence 
volatility of 86%, i.e. conditional variance decays slowly, 
not far from long-memory model. Hence the sum of 
parameters is less then one the condition of covariance 
stationary is confirmed. 

 
Figure 5.  

Static and dynamic volatility forecasting 
Static forecast of conditional volatility
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Dynamic forecast of long run volatility
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        Source: According to data on ZSE 
 
Figure 5. shows static forecast of conditional standard 
deviation and dynamic forecast of unconditional long run 
variance, using Student's distribution assumption with 5.3 
degrees of freedom in GARCH(1,1) model. 
 

6 Tail function as the instrument of VaR 

and CVaR forecasting 
VaR is defined as the maximum potential loss of 
financial instrument with a given probability (usually 1% 
or 5%) over a certain time period. Based on the Student's 
distribution, Value at Risk can be calculated as: 
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where tµ̂  is expected mean and tσ̂  expected standard 
deviation, predicted from estimated GARCH(1,1) model. 
VaR expressed in equation (10) can be interpreted as 
expected minimal percentage loss within probability of 

α , when dftα  is left percentile from standard Student's 
distribution. This is the case when investor holds "long" 
position, i.e. if he has bought an asset, in which case he 
incurs the risk of a loss of value of the asset. When 
investor holds "short" position (he has sold an asset, in 
which case he incurs a positive opportunity cost if the 

asset value increases), variable dftα  presents the right 
percentile from standard Student's distribution. 

In formula (10) expected standard deviation is 
corrected to get unbiased estimator of standard Student's 
scale parameter, according to equation (5). 

However, there is no rule for selection appropriate 
confidence level in VaR estimation. Hence, for achieving 
compromise solution in confidence level selection, it is 
better to estimate conditional Value at Risk, which 
includes more information about expected loss. 
Therefore, CVaR is defined as expected loss under tail 
area bounded by VaR: 

( ) ( )[ ]αα tttt VaRr/rECVaR ≤= .  (11) 
According to definition of conditional expectation CVaR 
can be expressed as:  
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where ( )xf  is density function of Student's distribution 

according to equation (1). Value q  presents left 

percentile of standard Student's distribution, i.e. 
standardized VaR. 

So, if on 12 October 2006 (the last day of observed 
period) investor has bought Pliva stocks at price of 
700,50 kunas, it can be predicted, for twenty days ahead, 
that his loss wouldn't exceed 26.39 kunas per stock with 
probability of 95%: 
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According to estimated non-integer degrees of 
freedom that in this case amount 5.3, function ( )xf  has 

the following expression: 
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The above defined function ( )xf  in interval 

]3926., −∞−  is in fact tail function. Tail function of 

( )xf  for estimated ( )05020 .RâV t+  is shown on figure 7. 
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Figure 6. 
VaR and CVaR according to Student's distribution 
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Source: Authors construction 
 
From the figure 6. theoretical difference among VaR 

and CVaR is obvious. 
 
Figure 7. 

Tail function 
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Source: According to data on ZSE 
 
In the treated case by substitution of empirical data 

conditional expectation of continuously random variable 
can be calculated: 
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Therefore, conditional expectation is: 
( ) 49373926 ..x/xE −=−≤ , 

which means that investor can expect average loss of -
37.49 kunas per Pliva stock within 5% worst cases ( 
confidence level of 95%). 
 

7 Conclusion 
This paper deals with modeling volatility of returns of 
Pliva stocks on Zagreb Stock Exchange, measuring 
volatility reaction on time-varying market movements 
and the volatility persistence. As the most appropriate 
model for those analyses is GARCH(p,q) model. 

According to the market random walk hypothesis, the 
returns are serially uncorrelated with a zero mean and 
hence unpredictable random variables. Even so, 
autocorrelation of the squared returns suggests high 
dependency between them. This means that volatility is 
conditioned on its past values. In estimation procedure 
the assumption of Student's distribution is used to capture 
fat tails.  

Likelihood function is maximized with non-integer 
degrees of freedom, which are related with appropriate 
kurtosis of empirical distribution. Moreover, estimated 
degrees of freedom are used for precisely forecasting 
VaR and CVaR under non-normality assumption.  

Namely, in this paper the conditional expectation of 
continuously random variable is calculated under tail 
area. Therefore, depending on if investor on capital 
market holds "long" or "short" position it's essentially 
important to predict possible and expected loss. By this 
paper it has been shown that the sensitivity of risk 
measuring with respect to the theoretical distribution 
assumptions is larger than one with respect to the 
parametric specification of the GARCH model. 
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