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Abstract: - Octave analysis is widely used in acoustics. Traditional bandpass filtering based octave analysis 
algorithms could not meet today’s real time high resolution analysis requirements because of the huge number 
bandpass filters they would need. To resolve this problem, a digital algorithm without using bandpass filtering is 
introduced in this paper. This algorithm is realized in frequency-domain and could be easily implemented on 
common DSP (Digital Signal Processing) systems. According to the experiments conducted on a digital dynamic 
signal analyzer based on DSP chips, this algorithm could meet the requirements of multi-channel real time octave 
analysis.  
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1 Introduction  
The purpose of this paper is to introduce an 

algorithm for realtime high resolution octave analysis. 
Octave analysis is widely used in acoustic signal 
analysis. The results of octave analysis are often 
presented on a chart called a spectrogram, which 
shows power distributions of the input acoustic signal 
according to its frequency components. Octave band is 
defined by Constant Proportional Bandwidth (CPB) 
method. 1/n octave is a frequency band whose highest 
frequency is 21/n times of the lowest frequency.  

Compared with traditional bandpass filtering 
algorithms, the algorithm introduced here saves a great 
deal of computations. This advantage makes it a 

feasible way to meet the realtime requirements. 
Publications about multirate signal processing are 
already accessible to most people, but there are few 
ones about applying this theory to octave analysis. It is 
thus hoped that this paper could provide some 
necessary materials to people who are interested in this 
field.  

 
 

2 The Theory and Deficiency of 

Traditional Bandpass Filtering Based 

Octave Analysis Algorithms 
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Octave analysis algorithms based on bandpass 
filtering (Fig.1) have been widely used by many octave 
analyzers for a long time. 

Fig.1 Theory of octave analysis algorithms based on 
bandpass filtering 

 
After the transducer converts the input acoustic 

signal into electrical signal, this electrical signal passes 
a series of bandpass filters, which have the standard 
octave center frequencies and bandwidths. These 
octave bandpass filters separate the signals with 
desired frequency components from the input signal. 
Then conduct time-domain integral average operation 
to every signal from these filters. This process gains 
the power density of each signal with the standard 
octave frequency components. After the weighting 
operations, the results could be displayed in octave 
spectrogram. 

The severest deficiency of these algorithms is that 
the number of bandpass filters increases exponentially 
as the analysis resolution enhances. For example, if the 
analysis frequency range is [20Hz, 20kHz], 1/24 
octave analysis needs 248 bandpass filters according to 
IEC61260-19951. Although the huge number bandpass 
filters could be replaced by a few DSP chips with 
proper software, namely digital filters, this digital 
filtering process needs very huge computations. To the 
example mentioned above, just the digital filtering 
process needs to execute 248 times filtering 
computations to signal from every input channel. Even 
the fastest DSP chips today could not meet the 
requirements of modern multi-channel realtime high 
resolution octave analysis. 

                                                        
1 IEC 61620-1995: Electroacoustics-Octave band and fractional 
octave band filters 

 
 

3 Theory and Deficiency of a Digital 

Octave Analysis Algorithm Realized in 

Frequency-domain 
Parseval Theorem points that the total energy 

contained in a signal x(t) summed across all of time t is 
equal to the total energy of the signal’s Fourier 
transform X(f) summed across all of its frequency 
components f. So, could octave analysis be realized in 
frequency-domain? (Fig.2) 

 
Fig.2 Theory of an octave analysis algorithm 

realized in frequency-domain 
 
After the transducer and A/D(Analog/Digital) 

module the input acoustic signal turns into a digital 
signal, which passes the following window module. 
The window truncates this signal to proper extent. The 
main purpose of this truncating process is to reduce the 
energy leakage in frequency-domain. Then calculate 
the power spectral density distributions of the signal in 
the whole frequency-domain using some proper 
spectrum estimation algorithm. Doing integral average 
to the power within each analysis band gets the value 
of power spectral density of each analysis band. After 
the weighting operations, the results could be 
displayed in octave spectrogram. 

Unlike the bandpass filtering based algorithm 
whose precision is mainly decided by the performances 
of the bandpass filtering process, there is no bandpass 
filtering in this algorithm. Instead, the number of 
spectrum lines within each band is an important factor 
affecting precision. According to experiments, there 
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should be at least 6 spectrum lines within each analysis 
band in order to guarantee the energy leakage between 
neighbor bands meets the requirements of 
IEC61260-1995. 

Since octave band is defined by CPB method, the 
bandwidth increases exponentially as the center 
frequency increases. However, FFT has the single 
frequency-domain resolution, so the spectrum lines are 
much fewer in a band with lower frequency than the 
one with higher frequency. Therefore, in order to 
guarantee there are at least 6 spectrum lines within 
each band, there should be at 6 spectrum lines in the 
band with the lowest center frequency.  

Suppose that the analysis frequency range is 
[20Hz, 20kHz], the sampling frequency is 48kHz, 
which does not cause aliasing according to sampling 
theorem2. According to IEC61260-1995, the center 
frequencies of 1/24 octave band is given as 

( 0.5)/80100
nf +=                       (1)                                          

The upper limit and lower limit frequencies are 
given as  

1/482 0
1/482 0

f flower
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−=

−=

⎧
⎪
⎨
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                  (2)                                       

From expressions (1)and (2), 1/24 octave band 
with the lowest center frequency is [19.95164Hz，
20.53626Hz]. To guarantee there are at least 6 
spectrum lines in this band, the frequency resolution 
must be at least (20.53626-19.955164)/6 
=0.0968493Hz. Therefore, there are at least 
48000/0.0968493=495165 analysis data in one frame, 
that is, the refresh time of one data frame is at least 
1/0.0968493=10.3253 seconds. Obviously, this refresh 
time is too long to meet the requirements of realtime 
analysis.This example shows that the conflict of the 
single resolution of FFT and the logarithmic frequency 

                                                        
2 Sampling theorem: a signal can be reconstructed completely and 
exactly from the sampling signal if the sampling frequency is 
greater than or equal to the highest frequency of the original signal. 

expression of octave analysis spectrogram is the reason 
that makes this algorithm unpractical. 

 
 

4 An Algorithm for Octave Analysis 

Based on Multirate Signal Processing 

Theory 
Multirate simply means multiple sampling rates. 

A multirate DSP system uses multiple sampling rates 
within the system. The process of increasing the 
sampling rate is called interpolation, and the process of 
reducing the sampling rate is called decimation. In this 
section, we use the decimation process to resolve the 
problem of the frequency-domain octave analysis 
algorithm in section 3. 

 
 

4.1 Theory of the Algorithm 
The basic theory of this octave analysis algorithm 

is demonstrated in Fig.3, where LP represents the 
lowpass filter, and  represents the decimation 
process with decimation factor3=2.  

 
Fig.3 Theory of an octave analysis algorithm 

based on multirate theory 
 
After the transducer and A/D module convert the 

                                                        
3 Decimation factor: the ratio of the input rate to the output rate, so 
here input rate / output rate=2. 
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input acoustic signal into digital signal x(n), through a 
series of successive decimations with the same 
decimation factor 2 get several groups of digital 
signals with different sampling rates (Fig.3). If using 
the same number of data in each signal group in the 
following spectrum estimation processes, the results of 
these spectrum estimations have different frequency 
resolutions. Furthermore, since the sampling rates of 
these groups of signals get lower and lower as the 
decimation times increases (from top to bottom in 
Fig.3), the resolutions of the spectrums of these signals 
get higher and higher.  

Octave analysis needs to gain the power spectral 
density in each band, so the next task is calculating the 
power of the signal in each band from the spectrum 
estimation results gained above. 

( )i kP PSD k f= ×Δ∑                  (3) 

Here Pi is the power of the signal in band i. PSD(k) is 
the value of spectrum line k of the power spectral 

density, and kfΔ  is the frequency resolution of 

spectrum line k. Since an analysis band may include 
spectrum lines with different frequency resolutions, the 

weighting factor kfΔ  is necessary here. The range of 

the sum in expression (3) covers all the spectrum lines 
in a band. In the other hand, since the value of a 
spectrum line stands for the power spectral density in a 
range whose center is the frequency of this spectrum 

line and width is kfΔ , the values some spectrum lines 

standing for probably do not belong to one band alone. 
In this case, the values of these spectrum lines should 
be divided by proportions.  

 
 

4.2 Design of the Lowpass Decimation Filter 
The decimation factor in this algorithm is 2, so 

the cutoff frequency of the lowpass decimation filter’s 
passband should be less than or equal to / 2π  to 

avoid the aliasing[1].  
In order to cut down computations, the decimation 

filters used in the algorithm are 47th halfband FIR 
(Finite Impulse Response) filters, whose nonzero 
impulse response coefficients are in Table 1 and 
frequency response is illustrated in Fig.4. As shown in 
Fig.4, the ripple in the filters’ passband is less than 
0.0001, and the stopband attenuation is 80dB. 
Non-aliasing normalized frequency range of the signal 
after the lowpass filtering is [0, 0.4], which becomes [0, 
0.8] after the decimation. 

 
Table 1 Nonzero impulse response coefficients of 

the 47th halfband filters 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

h(0), h(46) -1.975722792229084e-004
h(2), h(44) 5.760704520844917e-004
h(4), h(42) -1.350975944268072e-003
h(6) , h(40) 2.727516389781759e-003
h(8) , h(38) -4.986043929625469e-003
h(10),h(36) 8.496970950995700e-003
h(12), h(34) -1.378583469426858e-002
h(14), h(32) 2.171044581860376e-002
h(16), h(30) -3.397756532486159e-002
h(18), h(28) 5.494288268556362e-002
h(20), h(26) -1.006560861576759e-001
h(22), h(24) 3.164569315564292e-001
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Fig.4 Frequency response of the 47th halfband filters 
 
 
4.3 Frequency Range Division 
    The purpose of frequency range division is to 
combine the results of these spectrum estimations with 
different resolutions to get the power distributions in 
the whole analysis frequency range. 

The halfband filters used in this                                                         
algorithm are passband equal-ripper filters, so the 
passband is much easier to satisfy the design 
requirements than the stopband[2]. Therefore, the 
aliasing band is mainly decided by the start frequency 
of stopband. The normalized start frequency of 
stopband of the filters in this algorithm is 0.6 (Fig.4), 
so the non-aliasing band is [0,0.4], which becomes [0, 

0.8] after the 2:1 decimation. Define Dk  as the 

non-aliasing band coefficient, namely Dk =0.8 here. 

Suppose the sampling frequency of the input 
signal x(t) is Fs , and the non-aliasing band coefficient 
of anti-aliasing analog filter is kA. Therefore the 
possible highest non-aliasing frequency of the 

spectrum estimation result of x(t) is 2/As kF  

according to Sampling Theorem. Since the first group 
of signal (Fig.3) is calculated spectrum estimation 
directly without decimation, the highest non-aliasing 
frequency of the estimation result got from this group 

is 2/As kF . After the first 2:1 decimation, the highest 

non-aliasing frequency got from the second group of 

signal is 4/Ds kF . Similarly, the highest non-aliasing 

frequency got from the nth group of signal is 
n

Ds kF 2/ .  

Suppose the number of signal groups is N, the 
whole analysis frequency range could be divided into: 

[ ]0, / 2 ( / 4, / 2] ( / 8, / 4]

                  ( /16, / 8] [0, / 2 ]
s A s D s A s D s D

N
s D s D s D

F k F k F k F k F k

F k F k F k

= ∪

∪ ∪

                                         (4)          
Expression (4) indicates that the power of signal 

with frequency range ]2/,4/( AsDs kFkF  should be 

got from the spectrum estimation result of the first 
group of signal; the power of signal with frequency 

range ]4/,8/( DsDs kFkF  should be got from the 

spectrum estimation result of the second group of 
signal, and so on.  

 
 

5 Experiments 
All the following experiments are conducted on a 

TMS320C67 DSP chip based dynamic signal analysis 
system. 

The input signal is a sine signal with 1V 
amplitude and 750Hz frequency. The analysis 
frequency range is [20Hz,20kHz]; the sampling 
frequency is 48kHz. Fig.5 and Fig.6 are the 
spectrograms of the 1/12 and 1/24 octave analysis 
respectively. The single block in the right side of the 
figure represents the overall sound lever. Letter L 
below this block implies that the analysis uses linear 
weighting.  
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Fig.5 The spectrogram of 1/12 octave analysis 

 

 
Fig.6 The spectrogram of 1/24 octave analysis 

 
Fig.7 is the spectrogram of an 8-channel 1/24 

octave analysis. The input signal of channel 1 is an 1V, 
750Hz sine signal while other 7 channels are not 
connected. 

 
Fig.7 The spectrogram of 8-channel 1/24 octave 

analysis 
 
As shown in Fig.5--Fig.7, the power spectral 

density of the noise signal has more than 80dB 
attenuation compared with the input signal. Such 
performance could meet the requirements of most 
acoustic octave analysis. Besides, all the experiments 
conducted using this algorithm could meet the 
requirements of real time. While on the same hardware, 
the traditional bandpass filtering based algorithm could 
only realize 2-channel 1/3 octave analysis in real time. 
To the 1/24 octave analysis, this algorithm based on 
multirate signal processing theory could save about 10 
times computations than the algorithm based on 
bandpass filtering on the same hardware platform 
according to our experiments. 

 
 

6 Conclusions 
By integrating the multirate signal processing 

theory and classic spectrum estimation theory, a digital 
octave analysis algorithm is introduced here. The 
biggest innovation of this algorithm is that it abandons 
the bandpass filters. This makes the computations of 
the algorithm increases much fewer than the bandpass 

Proceedings of the 8th WSEAS International Conference on Acoustics & Music: Theory & Applications, Vancouver, Canada, June 19-21, 2007      53



 

filtering based algorithms when analysis resolution 
enhances. This is because most computation time of 
this algorithm is occupied by FFT and the decimation 
filtering, which increases little as the analysis 
resolution enhances. Experiments on a dynamic signal 
analysis system have proven this algorithm to be a 
practical way of the real time high resolution octave 
analysis. 

As mentioned above, the number of data in each 
spectrum estimation process is the same, while these 
data have different sampling rates, so the refresh time 
of bands with different frequencies is not uniform. That 
is, bands with higher frequencies have shorter refresh 
time than those with lower frequencies. Generally 
speaking, this character of refresh time is consistent 
with the physical character of broadband acoustic 
signal—the higher frequency components usually vary 
more quickly than lower ones. Yet, different refresh 
time in the whole analysis frequency range may also 
cause discontinuousness of the display of spectrogram. 
This discontinuousness is ignorable to the relatively 
stable signals according to our experiments. Yet, to 
some transient signals like the shock signal, the 
discontinuousness becomes visible.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Future work about the algorithm presented here 
may include finding ways to overcome display 
discontinuousness of the spectrogram of transient 
signals. Another possible work may be applying this 
idea to the sound intensity based acoustic analyzers. 
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