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Abstract: - This paper describes the use of the S-Transform to identify fatigue features in variable amplitude 
loadings. For this case, this type of loading exhibits nonstationary signal pattern, for which a normal frequency 
domain analysis cannot provide an accurate results for the analysis. In order to overcome this problem, the 
time-localisation approach provides a promising answer. A variable amplitude fatigue loading, which was 
measured from a lower suspension arm of a vehicle driven over a test track, was used for the analysis of this 
study. In order to identify fatigue damaging events, the data was processed using the orthogonal wavelet based 
algorithm, or known as Wavelet Bump Extraction (WBE). Since the S-transform if the simplification of the 
wavelet transform, it is a good idea to explore this transform to help the identification of these fatigue features. 
The results from the computational analysis results showed that the high amplitude events were detected in the 
variable amplitude loading based on the difference pattern of the time-frequency localisation. From the 
findings of this paper, it is suggested that further developments in the S-transform will find applications in a 
broad research area, particularly in the fatigue life assessment. 
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1   Introduction 
Many experimental fatigue loadings exhibit time-
varying, or nonstationary characteristics, which 
provide a challenge in signal analysis. Traditional 
approach for the frequency domain analysis of the 
time series was performed using the Fourier 
transform. This kind of analysis is not suitable for 
nonstationary signals, as it cannot provide any 
information of the spectrum changes with respect to 
time [1].  

Realising the limitation of the Fourier transform, 
therefore, the wavelet transform is more suitable 
method. In addition to the wavelet transform, which 
is a complex data analysis approach, an alternative 
method for the time-frequency domain analysis has 
also been introduced in order to process the random 
pattern signal, and this method is known as the S-
transform [2]. This transform is also included as the 
time-frequency domain, which is an extension of the 
ideas of the continuous wavelet transforms (CWT). 
Using the time-frequency localisation, the time and 
frequency of an oscillating signal can be detected. 
As continuity to the CWT development, the S-
transform was introduced for the simplification to 
the data analysis.  

The objective of this paper is to observe the 
applicability of the S-transform in determining 
fatigue features or fatigue damaging events in a 

variable amplitude loading. These features were 
identified and extracted using a wavelet-based 
algorithm, called the Wavelet Bump Extraction 
(WBE) [3,4]. Since WBE uses the orthogonal 
wavelet transform (by means of 12th order of the 
Daubechies wavelet), the S-transform may give a 
better indication to help in the identification of 
fatigue damaging segments. 
 
 
2   Literature Background  
Before looking to a detail application of the S-
transform with variable amplitude loadings, it is a 
good idea to describe a literature background of the 
signal analysis. Thus, information related to the 
Fourier Transform, the short-time Fourier transform 
(STFT), the wavelet transform and the S-transform is 
necessary. 
 
 
2.1  Frequency Domain Signal Analysis 
Frequency analysis is performed in order to convert 
a time domain signal into the frequency domain. The 
results of a frequency analysis are most commonly 
presented by means of graph having frequency on 
the x-axis and amplitude on the y-axis. The 
algorithm that is used to split the time history into its 
constituent sinusoidal components is the Fourier 
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transform. This transform was expressed as the 
summation of sinusoidal waves of varying 
frequency, amplitude and phase. The most common 
algorithm used for the Fourier transform is the fast 
Fourier transform (FFT) algorithm which was 
introduced in order to have a faster DFT calculation 
of the time series [5]. Various FFT algorithms were 
developed and the algorithm introduced by Cooley 
and Tukey [6] is the most commonly used because 
of its simplicity and fast computing time. 

Using the Fourier transform the frequency 
components of an entire signal can be analysed, but 
it is not possible to locate at what point in time that a 
frequency component occurred or its duration. This 
is not problematic when a stationary signal is 
analysed. However, Fourier analysis is not suitable 
for non-stationary signals. If there is a time 
localisation due to a particular feature in a signal 
such as impulse, this will only contribute to the 
overall mean valued frequency distribution and 
feature location on the time axis is lost [1]. Thus, the 
short-time Fourier transform (STFT) was developed 
introduce in order to solve the irregularities 
behaviour of FFT in analysing nonstationary signals,   

 
 

2.2 Time-Frequency Signal Analysis 
The STFT is a method of time-frequency analysis 
which aims to produce frequency information which 
has a localisation in time. It provides information 
about when and at what frequencies a signal event 
occurs [7]. The STFT approach assumes that if a 
time-varying signal is divided into several segments, 
each can be assumed stationary for analysis 
purposes. The Fourier transform is applied to each of 
the segments using a window function, which is 
typically nonzero in the analysed segment and is set 
to zero outside [8]. The most important parameter in 
the analysis is the window length, which is chosen to 
isolate the signal in time without any distortions.  

The STFT was developed from the Fourier 
transform, and it is mathematically defined as  

∫
∞

∞−

−−= dtthetX ti )()(),( ωτωωτ    (1) 

where the Fourier transform of the windowed signal 
is , ω is the frequency and τ is the time 
position of the window [9]. The result of this 
transformation is a number of spectra, each localised 
in a windowed segment.  

tieth ω−)(

While a useful tool, the STFT has a resolution 
problem, i.e. short windows provide good time 
resolution but poor frequency resolution. On the 
other hand, long windows provide good frequency 

resolution, but poor time resolution. The wavelet 
transform, which is described in the next section, is 
one of the most recent solutions to overcome the 
shortcomings of STFT [10]. 

A wavelet is a small wave with a signal energy 
concentrated in time, on the condition of 
admissibility condition. The wavelet transform is 
defined in the time-scale domain and is a significant 
tool for analysing time-localised features of a signal. 
It represents a windowing technique with variable-
sized region. The harmonic form of the wavelet 
transform can be derived from the Fourier transform, 
which gave  
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where a is a scale parameter which controls the 
frequency by dilating or scaling the time t. The 
parameter d translates the basic sine wave up and 
down the time axis and it is known as the translation 
parameter. A wavelet transform can be classified as 
either a CWT or a discrete wavelet transform (DWT) 
depending on the discretisation of the scale 
parameter of the analysing wavelet. The CWT is 
given by 

( ) tdtthdW d,)(),( ∫
∞

∞−

−= τωτ     (3) 

As continuity to the CWT development, the S-
transform was introduced for the simplification to 
the data analysis. The S-transform is a time–
frequency representation whose analyzing function 
is the product of a fixed Fourier sinusoid with a 
scalable, translatable window [11]. It combines 
elements of wavelet transform and windowed 
Fourier transform. The S-transform can also be 
generalized to include windows that have 
frequency-dependent functional form, and 
frequency-dependent complex phase modulation, 
essentially giving phase-shifted wavelets, which 
have no semblance at different scales. 

The S-transform, which is introduced in this 
correspondence, is an extension of the ideas of the 
continuous wavelet transform (CWT), and is based 
on a moving and scalable localizing Gaussian 
window. The S-transform is unique which provides 
frequency-dependent resolution while maintaining a 
direct relationship with the Fourier spectrum. These 
advantages of the S-transform are due to the fact that 
the modulating sinusoids are fixed with respect to 
the time axis, whereas the localizing scalable 
Gaussian window dilates and translates. 

According to the related literature [2], the S-
transform of a function h(t) in Eq. (3) is defined as a 
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CWT with a specific mother wavelet multiplied by 
the phase factor, i.e. 

),(),( 2 dWedS fi ττ τπ=      (4) 
where the mother wavelet is defined as 
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where f is the frequency of the samples. Written out 
explicitly, the S-transform is 
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If the S-transform is a representation of the local 
spectrum, a simple operation of averaging the local 
spectra over time can be used to give the Fourier 
spectrum, i.e.  

∫
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3 Computational Simulation: Results 

and Discussions 
 
3.1  Application of Fatigue Data Editing 

Algorithm  
The accuracy of the fatigue damaging event 
identification process was evaluated by the 
application to two types of the variable amplitude 
fatigue loadings. The T1 signal (Fig. 1a), was an 
artificial signal and it was defined to have 16,000 
data points which are sampled at 400 Hz. The using 
T1 was to show the effectiveness of the S-transform 
in dealing with any signal containing large transients 
in an otherwise small amplitude background. T1 
consists of a combination of sinusoidal and random 
segments of different amplitude or frequency. The 
signal was intentionally defined to be a mixture of 
both high amplitude bump events and low amplitude 
harmonic backgrounds. This signal T2 (Fig. 1b) was 
measured on a van while driving over a pavé test 
track and it was sampled at 500 Hz with a record 
length 46 seconds.  

Both fatigue loadings were then processed using 
the Wavelet Bump Extraction (WBE) algorithm 
which was developed using FORTRAN by 
Abdullah et al. [3,4]. Generally, WBE is a wavelet-
based fatigue data editing technique which is used 
to identify and extract fatigue damaging events, and 
to produce a shortened mission signal of similar 
behaviour. The WBE algorithm uses the 12th order 
Daubechies wavelets [12] as the basis functions. 
The unique of the WBE algorithm compared to 
other methods is that the retention of the most 
original fatigue damage potential in the WBE 

shortened (output) loading. In addition, the original 
vibrational signal energy, the phase and amplitude 
were also preserved in the WBE shortened loading.  
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Fig. 1. Variable amplitude fatigue loadings used for 
this study: (a) T1, (b) T2 

 
Using the WBE (with the implementation of the 

orthogonal wavelet transform (OWT)) with these 
two signals, the fatigue damaging events were 
identified based on the statistical properties of the 
signal. The identified fatigue damaging events are 
shown in Fig. 2. These segments for both signals 
were combined in order to produce the shortened 
signals and they are shown in Fig. 3. Based on the 
similar results presented in the related papers [3,4] 
by the main author, almost all fatigue damage was 
retained when the shortened loading is 40% of the 
original loading time length. 

 
Extracted bump segments of T1
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(b) B1 – B9 are the segment numbers 

Fig. 2. The extracted fatigue damaging events of 
the input signals: (a) T1, (b) T2 
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Mission signal of T1
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(b) 

Fig. 3. The shortened loadings produced using the 
WBE algorithm: (a) The 12.5-second T1 loading,  

(b) The 19-second T2 loading 
 

     
3.2  Application of S-Transform 
The signals of Fig. 1 to 3 were simulated using the 
MatLab package, and the flowchart for the 
simulation is shown as in Fig. 5. Since the WBE was 
used to identify fatigue damaging events based on 
the implementation of the OWT, the S-transform is 
then be used to verify the appropriate identified 
fatigue damaging events.  

Fig. 4 shows the pattern of signal energy 
distribution in the time-frequency axis, which is 
applicable for T1. Fig. 4a shows the pattern of high 
amplitude events detected from the original T1 
signal of Fig. 1a, for which these events were 
distributed between 0.5 to 5 Hz. These events were 
extracted using WBE (Fig. 1b), and the segments 
were then simulated in MatLab in order to observe 
their signal pattern in the time-frequency 
localisation. The result in Fig. 4b indicates the 
localisation pattern is similar for both the original 
T1 and the segments of fatigue damaging events. 
The findings showed that the WBE algorithm is able 
to extract the right fatigue features, which contribute 
the damaging effects to mechanical components.  

Fig. 4c shows the pattern of time-frequency 
localization for the shortened loading, and showing 
high-energy distribution can be observed for the 
whole length of the signal. Since the shortened 
loading is able to preserve 100% of the original 
fatigue damage [10], the high-energy localization in 
this S-transform indicates the loading segments with 
high fatigue damage values. 

Using the experimental data set of T2, Fig. 5 
shows the pattern of signal T2 energy distribution in 
the time-frequency axis. Fig. 5a shows the pattern of 
high amplitude events detected from the original T2 
signal (Fig. 1b), which has been simulated in the 
MatLab environment. Since T2 exhibits almost a 

random pattern with several transient effects 
(however, the signal is nonstationary based on the 
statistical analysis in [3]), low energy pattern has 
been observed in the time-frequency localisation 
background of the random signal.  
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Fig. 4. The pattern of high amplitude events 

produced by the S-transform for T1:  (a) The original 
signal, (b) The identified fatigue damaging events in 

WBE, (c) The shortened loading 
 

The simulation result using the fatigue damaging 
event segments extracted (Fig. 2b) from the OWT 
approach of the WBE algorithm has been presented 
in Fig.5b. It shows some of the significant high 
amplitude events have been detected from the colour 
difference of the time-frequency localisation. Since 
the fatigue damage summation of the extracted 
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fatigue damaging events is similar to the fatigue 
damage of the original signal [12], it is suggested 
that the S-transform is able to detect fatigue 
damaging events from a fatigue loading with 
random background. Even though several events 
were identified to have different colour pattern from 
the pattern of the random background (in Fig. 5b), 
however, it is assumed that these events have 
minimal fatigue damage, which need further 
investigation. 
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Fig. 5. The pattern of high amplitude events 
produced by the S-transform for T2:  (a) The 

original signal, (b) The identified fatigue damaging 
events in WBE, (c) The shortened loading 

 

4   Conclusion 
The objective of this paper is to investigate the 
applicability of the S-transform to determine fatigue 
damaging events in a variable amplitude fatigue 
loading. Since these events were successfully 
identified in WBE by means of the 12th order of the 
Daubechies wavelet, the S-transform (having a basic 
wavelet mathematical function) should also gave a 
potential approach in identifying these fatigue 
features. The arguments are supported by the results 
presented in Fig. 5 and 6.  

The simulation results showed that the high 
amplitude events were detected in the variable 
amplitude loading based on the difference pattern of 
the time-frequency localisation. Thus, it is suggested 
that the S-transform is able to detect fatigue 
damaging events from a random fatigue loading. 
Finally, further development in the S-transform will 
help to find some applications in a broad range of 
disciplines, particularly in the fatigue life 
assessment. 
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