
A Context Inference Framework
based on Fuzzy Colored Timed Petri Nets

KEON MYUNG LEE1, KYOUNG-SOON HWANG1, CHAN HEE LEE2
1School of Electrical and Computer Engineering, 2Dept. of Microbiology,

Chungbuk National University, Korea
kmlee@cbnu.ac.kr

Abstract1 - In context-aware computing environment, some context is characterized by a single event, but many other contexts are
determined by a sequence of events which occur with some timing constraints. Therefore, context inference should be conducted by
monitoring the sequence of event occurrence along with checking their conformance with timing constraints. Some context could be
described with fuzzy which can be easily used in situation description. Multiple entities may interact with a service system, and thus the
context inference mechanism should be facilitated to handle multiple entities in the same situation. This paper proposes a context
inference model which is based on Petri net. The model represents and handles the sequential occurrence of some events along with
involved timing constraints, deals with the multiple entities using the colored tokens, and employs the concept of fuzzy tokens to
support the fuzzy concepts.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government(MOEHRD) (The Regional
Research Universities Program/Chungbuk BIT Research-Oriented University Consortium)

1 Introduction
With the advances in information technologies, sensor
technologies, various pilot context-aware service systems
have been developed for context-aware information
services in ubiquitous computing environment, intelligent
services in intelligent robots, and various other intelligent
application software.[1-9,11,16] In order to provide
quality services, it is valuable to make use of contextual
information. Hence, the quality service systems need to
collect sensor data from which context could be deduced
and to have a mechanism to conduct such context
inference. Context denotes any kind of information which
can be used to characterize the state of an entity. An entity
can be either user or anything involved in the interactions
between user and the application.[1] Typical examples of
contextual information include location, identity, time,
behaviors and so on which give some clues to answer the
questions about who, what, when, and where. An
application which takes into account the working context
in providing information or services is called a context-
aware system. The data used in determining some context
are collected by sensors and transmitted to a context-
aware service system through sensor networks. Some data
are inherently stream data since the sensors continuously
monitor some interesting aspects of the environment. On
the other hand, each sensed datum can be regarded as an
event in the environment. Some context can be determined
by a specific single event, yet in many situations a
collection of events satisfying some sequential and timing

constraints determines a context. Therefore, context
inference is involved with the task to effectively detect a
specific occurrence sequence of events and the task to
check whether those events satisfy the specified timing
constraints. To our best knowledge, the existing context-
aware service systems have not explicitly taken in
consideration such kind of context inference.

This paper is concerned with a Petri net-based context
inference model called fuzzy colored timed Petri net
model which allows to easily represent complicated
contexts which are determined by a sequence of events
with timing constraints, enables to model multiple objects
located in the same situations, and in addition incorporates
the notion of fuzzy tokens to deal with fuzzy context.

The remainder of this paper is organized as follows:
Section 2 presents some related works including Petri net
models and existing context inference approaches. Section
3 introduces the proposed fuzzy colored timed Petri net
model. Section 4 shows how to model the contexts, and in
final it addresses the conclusions in Section 5.

2 Related Works

2.1. Petri Net Models
Petri nets are one of well-known tools used for modeling,
formal analysis and design of systems. A Petri net is a
bipartite directed graph defined as a tuple <P, T, F, M>, in
which P = {P1, P2, …, Pn } is a finite set of places with n
≥ 0; T = {T1, T2, …, Tm} is a finite set of transitions with
m ≥ 0 and P ∩T = ∅; F ⊆ (P ×T) ∪ (T×P) is the flow

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 458

relation, a mapping representing arcs between places and
transitions. M: P → I, I = {0, 1, 2, …}, is a function that
associates a number of tokens to places.

A Petri net is graphically visualized by representing its
places with circles, transitions with bars, arcs with arrows,
and tokens with small black dots. A place containing one
or more tokens is said to be marked. When each place
incident on a transition is marked that transition is said to
be enabled. An enabled transition may fire by removing
one token from each of its input places and putting one
token into each of its output places. In the basic Petri net
tokens have no identity. From the basic Petri net, several
extended Petri nets have been proposed, which includes
colored Petri net, timed Petri net, colored timed Petri net,
object-oriented Petri net, and so on.[10,13,15]

A colored timed Petri net(CPN) is defined as a tuple <
Σ, P, T, F, τ > in which Σ is a finite set of token colors; P,
T and F are the same with those of the classical Petri net,
respectively. τ: T → {0, 1, 2, …} × {0, 1, 2, …, ∞} is a
function mapping from each transition to a pair of values
corresponding to release time (i.e., delay) and maximum
latency (i.e., timeout), respectively. For any transition t ∈
T, we write τ (t) = (τr, τm) and we require that τr ≤ τm.

In the colored timed Petri nets, tokens have color types
and a token of one color is discernible from a token of
another color. Within a color class, an individual token
cannot be distinguished from one another.

2.2 Context Inference Systems
There have been various efforts to support context
inference for context-aware service applications. The
Stick-e Notes system[2] is a generic framework to help
develop context-aware applications, on which they
represent the context-aware knowledge using if-then rules
and apply the inference mechanisms (e.g., forward or
backward chaining) to conduct context inference based on
the rules. Schilit's System Architecture[3] is an
architecture to support context-aware mobile computing
applications which is focused on the contexts of users and
devices. The architecture contains the following
interacting components: device agents to manage the
states and functions of devices, user agents to take care of
users' preference, and the active map to keep track of the
location information for the users and the devices. The
architecture allows the restricted forms of context
inference because it is designed to care about the context
between users and devices. CALAIS[4] is an architecture
for the context-aware applications which are mainly
focused on location-related contexts. It is not so flexible
to handle various kinds of contexts. TEA project[5] is an
architecture designed to support context-aware services on
personal mobile devices. It employs a blackboard model
for context inference in which sensors record their
acquired data into the blackboard, context interpreters get

the summarized information about their concerned data or
interpret them and then they also store the processed
information into the blackboard, the application
implements context-aware services by referring to the
contextual information from the blackboard. Due to
restricted flexibility of the blackboard model, the TEA
project architecture has difficulty in handling the type of
context inference that we have interested in.

3 The Proposed Fuzzy Colored Time Petri
Net Model

3.1 The Context Inference
 In the applications to have to catch the context from the
data acquired by the sensors, some context is determined
by a specific event, and other types of context are
characterized by a collection of events that happen in a
way to satisfy the specified timing constraints among them.
For example, suppose that a person had turned the gas
range on and went out home, where we consider the
situation as being in danger of fire if a specified amount of
time has passed yet the person did not come back. In order
to provide contextual services, it is needed to have an
effective way to describe contexts of interest, and to have
an efficient inference mechanism to determine the valid
contexts from available data some of which are stream
data. As an effective framework for the context
representation and the context inference, this paper
introduces a new model named fuzzy colored timed Petri
net.

3.2 Context Representation based on the Fuzzy
Colored Timed
For the convenience of description, let us denote as a
single event-based context a context which is
characterized by a single event, and as a multiple event-
based context a context which is characterized by a
collection of events which satisfies some timing
constraints.

The if-then rules which are widely used in knowledge
representation could be employed to represent some sort
of contexts. The if-then rules allow to easily describe
some simple contexts, but have difficulty in expressing
complex contexts like multiple event-based contexts. Even
though a multiple event-based context is expressed in if-
then rules, it is hard to follow the progress of the contexts
in the if-them rules on the fly.

Procedural modules can be employed to recognize
multiple event-based contexts. This approach has
flexibility in handling context inference, yet it also implies
complexities because we have to build procedural
modules for every single context and to pay special
attention to possible conflicts among those modules. In
addition, since events should be delivered to each

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 459

procedural module, it could cause the structure of the
implementation to be entangled. On the other hand, it is
not easy to keep track of context progress with which we
are in part concerned in this study.

In order to handle context inference, the proposed
method adopts a colored timed Petri net-based model to
describe contexts and to conduct inference. In a Petri net
model to represent a context, a place may correspond to
an event and transitions are used to describe the timing
relationships among events. When a specific event
happens, the corresponding place turns out to have a token.
Each transition t is bound with a timing constraint label
[αt, β t], where αt is the release time, and βt is the latency
time. The release time αt indicates that the transition is
enabled after αt time under the condition that all its
incoming places have their token. The latency time βt
indicates the transition t to be fired after βt time under the
condition that t has been enabled. It means that a
transition t is enabled when all its incoming places have
had token for αt time and then is fired after βt time.

There may be multiple entities to participate in the
environment. Therefore, the colored tokens are used to
discriminate each entity that plays in the same context.
When it is needed to discriminate entities, it is designed to
put colored tokens into the corresponding places at its
event occurrence and to make the corresponding
transitions produce the corresponding tokens. The sink
places containing a circle indicate the place in which
tokens arrived are just discarded.

In the proposed context inference framework, we
classify the events into triggering events and state-
changing events.

Def. Triggering events and State-changing event

The state-changing events denotes ones which change
the state of an entity or the environment and the changed
state keeps persistent until its state is reset, e.g., the light
is on. The triggering events are ones which do not make
any persistent state change, e.g., the bell rings.

As a matter of fact, a state-changing event consists of a

triggering event and a reset event and thus can be
modeling with triggering events. For the convention of
context modeling, the proposed framework uses the notion
of state-changing events.

Def. A context CT with 2 events is defined by CT = ((e1,
e2), C(e1, e2)), where ei ∈TE ∪ SE, TE is the set of
triggering events, SE is the set of state-changing events,
and C(e1, e2) ∈ C is the timing constraints on the events e1
and e2 which are expressed in the sequel C = C1 ∪ C2 ∪
C3 ∪ C4.

Due to two kinds of events, such contexts with two events
can be categorized into TE-TE contexts, SE-SE contexts,
TE-SE contexts, and SE-TE contexts. For TE-TE contexts,
there are two related triggering events e1 and e2, their
timing constraint is expressed as follows:

C1 : TE x TE → (Te1, Ta1, Te2)
In the above, Te1 is called the exclusive time of event e1
during which the following event e2 should not occur, and
Ta1 is called the allowance time during which e2 should
happen. In a similar way, the other constraints are
described as follows:

 C2 : SE x SE → (Tse1, Tsv1, Tsa1, Tse2, Tsv2)
For a state-changing event, Tse1 is the exclusive time in
which the changed state is kept and the following event is
not allowed to occur, Tsv1 is the valid time interval [Tsvl1,
Tsvu1] in which the state needs to be reset, Tsa1 is the
allowance interval [Tsal1, Tsau1] for the following event to
have to occur, Tse2 is the exclusive time of e2 and Tsv2 is the
valid time of e2. When the reset event is not needed to
describe context, the valid time interval constraint Tsvi may
be omitted.

C3 : TE x SE → (Te1, Ta1, Tse2, Tsv2)
C4 : SE x TE → (Tse1, Tsv1, Ta1, Te2)

The exclusive time Tsei is measured from the occurrence of
the event, the valid time Tsvi for a state-changing event is
measured from the end of the exclusive time, and the
allowance interval Tsai = [Tsali, Tsaui] is measured from the
end of the exclusive time.

The contexts made of two events can be modeled by the
Petri net models as follows: Figures 1 to 4 show typical
Petri net models for TE x TE contexts, SE x SE contexts,
TE x SE contexts, and SE x TE contexts, respectively

Figure 1.A TE-TE context model CTtt(((e1, e2), (Te1, Ta1,

Te2))

Figure 2. An SE-SE context modelCss(((e1, e2), (Tse1, Tsv1,

Tsa1, Tse2, Tsv2)).

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 460

Figure 3. An TE-SE context model CTts(((e1, e2), (Te1, Tv1,

Tse2, Tsv2)).

Figure 4. An SE-TE context model CTst(((e1, e2), (Tse1, Tsv1,

Tsa1, Te2)).

As we have seen above, the proposed Petri net-based
representation allows us to express various contextual
situations in which multiple events are involved and on
which some timing and sequential constraints are imposed.
Single event-based context can be modeled by a single
place to which context-aware service module is bound and
thus when the corresponding event happens, its service is
made to be triggered. By composing the above-mentioned
primitive context modules in their own way, the
developers can easily represent the complicated
contextual situations. The visual representation of Petri
net helps developers easily verify and understand what
context is designed and how it works. In addition, it
allows to visually keep track of the context progress
responding to the incoming stream of sensed data.

3.3 Fuzzy Context Representation
In the proposed model, there are two types of places
according to how the state of places is maintained: event
state places to represent whether a specific event occurs,
and persistent state place to continuously provide the
probably changing values of the corresponding state. In
the case of an event state place, when its event happens, a
token is placed into the corresponding place and once one
of outgoing transitions is fired, the token is discarded. On
the contrary, the tokens of the persistent state places are
not discarded even though some of their outgoing
transitions are fired. The tokens of persistent state places
have some numeric values reflecting the state of a specific
stream data from a sensor.

The proposed model uses a persistent state place to
represent a fuzzy constraint. For example, when an event
state 'temperature is low' is modeled, it is represented by a
persistent event place to which a stream of temperature

values acquired from a thermal sensor is bound and into
which a membership function expressing the fuzzy
constraint low is embedded. The persistent event place
keeps providing the membership degree of the
temperature values received to the fuzzy constraint low.

Figure 5 shows an example of a persistent state place
for a fuzzy constraint 'temperature is low'. The place has
the assigned membership function µlow of fuzzy constraint
low and keeps changing the value of its token according to
the membership degree of the just received temperature
values to the membership function µlow. On the other hand,
as shown in Figure 5 (a), the immediately following
transition of a persistent state place is labeled with a
threshold value θ and the value pair [α, β] as its timing
constraint. The transition turns into the enabled state if its
incoming place has been the token value greater than or
equal to θ for more than α time, and is triggered when βt
time has passed after its enablement. Each time the
membership degree falls below the threshold, the timer for
monitoring place enablement is re-started as shown in
Figure 5 (d). When the transition is triggered, it produces
a token into its following place(s). According to the
developer's design decision, the token may have
selectively either the average membership degree over the
enabled period or the final membership degree, or some
other value. The token value, if exists, of the following
places could be either used or discarded depending on the
designed model specification.

Figure 5. A fuzzy persistent state place and its

corresponding transition

Once a transition with an incoming persistent state
place is triggered, it starts over its mission by resetting its
timers and monitoring the token value of the incoming
place. According to the design decision, such a transition
is optionally set to be in the sleep mode for a specified
time period after its triggering.

3.4 Composition of Context Inference Models
In Section 3.2 we have described how to model contexts
with a sequence of two events with timing constraints.
Those 4 types of context models play the role of basic
building blocks in the proposed context inference
framework. When a context could be characterized with

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 461

more than two events, each pair of events related with
timing constraints is modeled with a basic building block.
Some context could be described with multiple sub-
contexts which need to be satisfied simultaneously or
selectively. For the simultaneously satisfying sub-context
components, the Petri net models for them are combined
by directing their final places into a transition as shown in
Figure 6. When each of multiple context components
describes a context, their final places are merged into a
place as shown in Figure 7.

Figure 6. Composition of the sub-context components that

need to be satisfied simultaneously

Figure 7. Composition of the sub-context components
each of which can characterize the designed context

An event might be used in multiple context modules and
thus the place bound to an incoming event ei is connected
to all the places for ei in the built context modules as
shown in Figure 8.

Figure 8. Binding an incoming event place with the

corresponding event places of the models

Figure 9 shows an example of context modeling which
describes the contextual situation that “It is dangerous to
leave the house for more than 30 minutes after one has
turned the oven.”

Figure 9. A Petri net model for a danger context

3.5 Context Inference Module
In the proposed context inference framework, each
transition has an assigned processing module with which
context inference is conducted. The processing module of
a transition t starts the timer for αt once all its incoming
places have a token with the same color, if tokens are
colored. If the transition has a persistent event state, it
starts its timer when the token value becomes greater than
or equal to the labeled threshold. In the middle of timer
working, if some of its incoming places loses its token or
the token value of its incoming persistent event place falls
below the threshold, the timer is reset and stopped. When
the timer reaches at time αt, the transition turns to be in
the enabled state and the timer for βt starts. After that,
when βt time has passed, the transition is triggered and the
tokens of the incoming place(s) is removed, if they are not
a persistent event place, and tokens are added into the
succeeding places. Along with that, the timers are reset
and the processing module of the transition starts over its
mission. When a token is added into a place
corresponding to a context, it is regard as that the context
is recognized and the bound service module is invoked for
context-aware service.

4 Development of Context-aware Service
Applications
When a context-aware service application is developed
based on the proposed method, it is modeled in the
following sequence:
Step 1. Enumerate the kinds and characteristics of

available sensor data.
Step 2. Identify all contextual situations under

considerations.
Step 3. Model each contextual situation with a fuzzy

colored timed Petri model according to the method
presented in Section 3.

Step 4. Implement the service modules for each contextual
situation and bind them to the corresponding context
places.

Step 5. Combine the places corresponding to the same
event into a single place, if possible.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 462

For each transition t, install as many pairs of timers as
the number of token colors used, where timers correspond
to release time αt and latency time βt, respectively. In
order to enable flexible context-aware services, it allows
transitions to use software modules which may takes as
input the external sensor data and/or the output of other
modules.

In order to see its applicability, we implemented a
prototype system for the proposed method. In the
prototype implementation, the modules bound to the
places to get inputs from external sources are
implemented with a multi-thread architecture, and the
token management for the other places is sequentially
conducted according to the topology of the designed Petri
net model. Each transition is organized to have an own
housekeeping module which takes care of both its timers
and the processing module invocation according to fan-
in/fan-out topology. These housekeeping modules are
implemented to be processed in a round-robin fashion. To
help track of the progress of concerned contexts, a simple
visualization module to show how the tokens are
propagated was implemented. In the visualization module,
it is assumed that the graphs for Petri net modules are
provided by the developers. At the current stage of
development, we implemented a simple Petri net drawing
tool which uses an XML-based file format to store the
topology of Petri net models designed by the developer.
The simulation environment is compiled together with the
processing modules along with an XML file formatted
data which describe the models.

5 Conclusions
Various service applications to use contextual information
are expected to emerge. For such applications, it is crucial
to recognize the contexts from the data acquired. This
paper proposed a model called fuzzy colored timed Petri
net which allows easily to represent context recognition
knowledge and to enable the inference recognition. The
proposed method allows to model complicated contexts in
which multiple events are involved with some timing and
sequential constraints. It also allows to conduct the
context inference and to visually keep track of the context
progress with the inherent characteristics of Petri net
models. The places and transitions corresponding to fuzzy
context allow to handle flexiblely various kinds of context.
Compared to the existing approaches such as rule-based
systems, procedure-based systems, the proposed approach
is advantageous in that it allows visual modeling and
direct one-to-one mapping from models to codes. As the
further studies, there remains to develop the proposed
method in a software framework in a form of
API(Application Program Interface) and to provide

several successful application examples developed on the
framework in order to show the applicability.

References
[1] A. K. Dey, “Providing Architectural Support for

Building Context-Aware Applications”, Ph.D.
dissertation, Georgia Institute of Technology, 2002.

[2] P. J. Brown, “he stick-e document: a framework for
creating context-aware applications”, Electric
Publishing, Vol.9, No.1, 1996, pp.1-14.

[3] B. N. Schilit, “System architecture for context-aware
mobile Computing”, Ph. D. dissertation, Columbia
University, New York, 1995.

[4] G. J. Nelson, “Context-aware and Location Systems”,
Ph.D. dissertation, University of Cambridge, 1998.

[5] A. Schmidt, K. A. Aidoo, et al, “Advanced Interaction
in Context”, Proc. of HUC'99, 1999, pp.89-101.

[6] J.-C. Na and R. Furuta, “Context-Aware Digital
Documents Described in A High-Level Petri Net-
based Hypermedia System”, LNCS, Springer-Verlag,
2004.

[7] H. Djenidi, S. Benarif, A. Ramdene-Cherif, C. Tadj, N.
Levy, “Generic Multimedia Multimodal Agents
Paradigms and Their Dynamic Reconfiguration at the
Architectural Level”, J. on Applied Signal Processing,
Vol.11, 2004, pp.1688-1707.

[8] H.J. Genrich, K. Lautenbach, “System Modeling with
High-Level Petri Net”, Theoretical Computer Science,
Vol.13, 1991, pp.109-136.

[9] R. Gudwin, F. Godmide, “Object Networks - A
Modeling Tool”, Fuzzy Systems Proceedings, 1998
IEEE World Congress on Computational Intelligence,
Vol.1, 1998, pp.77-82.

[10] K. Jensen, “Coloured Petri Nets: Basic Concepts,
Analysis Methods and Practical Use”, EATGCS
Monographs on Theoretical Computer Science,
Springer-Verlag, 1992 .

[11] J.-C. Na and R. Furuta, “Context-Aware Digital
Documents Described in A High-Level Petri Net-
based Hypermedia System”, LNCS, Springer-Verlag,
2004.

[12] H. Djenidi, S. Benarif, A. Ramdene-Cherif, C. Tadj,
N. Levy, “Generic Multimedia Multimodal Agents
Paradigms and Their Dynamic Reconfiguration at the
Architectural Level”, EURASIP J. on Applied Signal
Processing, Vol.11, 2004, pp.1688-1707.

[13] D. J. Carmichael, J.Kay, B. Kummerfeld, “Consistent
Modeling of Users, Devices and Sensors in a
Ubiquitous Computing Environment”, User Modeling
and User-Adapted Interaction, Vol.15, No.3, 2005,
pp.193-195

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 463

