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Abstract:- This paper presents a new numerical method for image inpainting based on the vorticity stream 
function formulation of the Navier-Stokes Equations. The method employs a finite volume discretization and a 
Runge-Kutta time stepping scheme with dissipative terms. A stability analysis of the proposed numerical 
method has been performed to determine the maximum allowable time step for which the computation will be 
stable. It is shown that the expression for the maximum time step contains terms that are functions of the image 
isophote gradient and curvature. The method has been implemented for a number of grey level and colored 
images and the results indicate that the method is effective in terms of solution quality and computational 
efficiency.  
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1 Introduction 
Inpainting is the problem of filling-in missing 
regions in a digital image.  The problem can be 
stated as: given an image with missing regions, 
fill in the missing regions or modify the 
damaged ones in a non-detectable way [1]. 
Considerable progress has been made in solving 
the inpainting problem using different 
techniques ranging from variational approaches 
[2], convolution methods[3], partial differential 
equations [1,4,5 ], and texture synthesis [6,7,8].   
Recently, Bertalmio, et. al. [4] proposed a novel 
approach based on the analogy between the 
image inpainting equations and the Navier-
Stokes equations of fluid dynamics. In this 
approach, the stream function plays the role of 
image intensity, the fluid velocity represents 
image intensity gradient, and fluid vorticity acts 
as the Laplacian of the image intensity. Using 
the stream function vorticity formulation of the 
Navier-Stokes, the equations are solved 

numerically in the region to be inpainted. The 
numerical algorithm is implemented iteratively 
in two steps, it starts by solving for the vorticity 
using a simple forward Euler time stepping, 
with centered differences in space for the 
diffusion and a minmod method [9] for the 
convection term. After one time step, the image 
intensity is computed by solving a Poisson 
equation using the Jacobi iteration method. The 
process is then repeated until a steady state is 
reached. Stability of the numerical method, 
however, is not addressed, and the choice of a 
suitable time step seems to be determined by 
numerical experimentation. In the present 
paper, a different numerical approach is 
proposed, using a modified vorticity transport 
equations, finite volume discretization, and a 
Runge-Kutta time stepping scheme with 
dissipative terms. The following sections 
describe the proposed method and present 
results of inpainting several digital images.  
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2 Mathematical Model 
Following the approach presented in [4], the 
inpainting equations to be solved are 
represented as a vorticity transport equation as 
follows:  
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ω=ΔI   (2) 
Where I is the isophote intensity, ω  is the 
Laplacian of the image intensity, andν  is a 
diffusion parameter. 
In the present approach the Poisson equation (2) 
is replaced by:  
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Where α alpha is a relaxation parameter, 

II ∇∇⊥ ,  and are the isophote gradient and 
normal respectively. At steady state Eq. (3) is 
equivalent to Eq. (2), since 0=∇•∇ ⊥ II  and 
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The left hand side of equation (4) represents 
unsteady and convective terms, while the right 
hand side contains diffusion and source terms. 
Eq.(4)  can be also put in the linearized form 
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Where 
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3 Space and time Integration  
Integration of Eq.(5) is implemented using a 
finite volume approach. The discretization 
procedure follows the method of lines in 
decoupling the approximation of the spatial and 
temporal terms [11]. The computational domain 
is divided into quadrilateral cells representing 
the pixels to be inpainted (Fig.1). The 
integration over physical control surface area 
takes the form:  
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Where R(W) is the discretized residual of 
spatial derivative and can be written as: 
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Fig1. The pixel cell definition and the 
discretization area of computational domain 

(i and k indices refer to pixel i and its neighbors) 
 
 
The different terms are evaluated as follows: 
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Artificial dissipative terms are added to the original 
form of the Image Inpainting equations in order to 
eliminate spurious oscillation and accelerate the 
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solution convergence. A fourth order linear 
dissipation (Dw) is inserted to Eq.(6) as follows: 
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The differential form of the fourth order dissipation 
yields: 
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There are two options for the values of ( yx εε , ), 
either taken as constant value of order unity, or 
evaluated from the eigenvalues of the matrices in 
Eq. (4). 
 
The time integration of Eq.(6) is preformed by 
using a fourth order Runge-Kutta method as 
follows: 
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4  Time Step and Stability Analysis 
 
A stability analysis of the proposed numerical 
method has been performed to determine the 
maximum allowable time step for which the 
computation will be stable. To simplify the 
analysis, the maximum time step for the 
convective (hyperbolic) and the diffusive 
(elliptic) terms in Eq.(6) are determined 
separately and then combined to arrive at the 
maximum allowable time step. Using the Von 
Neumann stability analysis method[10], the 
amplification factor (Z) for the hyperbolic part 
yields  
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The eigenvalues B,A λλ will be obtained as the 
following 
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The eigenvalues of matrix A are extracted from 
the equation 
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Where 1J −=  , Δx and Δy are the pixel width 
and height  respectively and are equal to unity.   
 
Since the fourth order Rung Kutta is used then 
the stability condition is realized on the 
imaginary axis of the Rung Kutta stability 
criteria. The stability criteria [ ] realizes a 
maximum value of Z equal to 22 . The 
maximum value of ctΔ is achieved when θ, is 

equal to 
2
π  and ϕ is equal to

2
3π  , then 

ctΔ yields: 
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The values of yxxxIyyI

x
I

y
II ωωω ,,,,,,,  are 

taken as absolute values 
  

Performing a similar analysis to the elliptic 
(diffusive) part of Eq.(6), one gets: 
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The combined time step is then evaluated as: 
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5 Boundary conditions  
 
To complete the implementation of the 
numerical solution, boundary conditions need to 
be specified on the boundary of the inpainted 
region. The required conditions can be obtained 
or computed from outside the inpainted region 
as follows: 

1. Compute yIxI −,  using one-sided 

three-point finite difference formulae for 
the first derivative of the intensity 
variable I  

2. Compute yyIxxI ,  using one-sided 

three-point finite difference formulae for 
the first derivative of intensity derivative 
in the x-direction xI  and in the y-

direction yI   

3. Compute ω  from the poisson equation  

yyIxxI +=ω  

4. Compute yx ωω ,  using the one-sided 

three-point finite difference formulae for 
the first derivative of vorticity 
variable ω .  

 
 6 Results 
The developed method has been tested on grey 
and colored images. The inpainting algorithm is 
implemented using Compaq visual FORTRAN 
on a Pentium IV PC (265Mb RAM, 2GHz) 
under windows platform. All the examples use 
images available from public databases over the 
Internet. and foregoing articles. The CPU time 
required for inpainting depends on the size of 
the inpainted region. The cpu time for each 
inpainted pixel is roughly equal to 8E-06 
second per iteration for each color channel (red, 
green, and blue) The number of iterations 
ranges from 500 to 5000. In all examples 
presented, the inpainting process is completed 
in less than 2 minutes. 
Figure 2a shows a deteriorated grey level image 
that has been used by several researchers. The 
image mask shown in Figure 2b is either 
supplied or drawn manually using a graphical 
user interface developed as part of the 
developed method. The restored photograph is 
shown in Figure 2c is very satisfactory and 
similar to the result of reference (2). 
Two other examples are displayed in Figures 3 
and 4 showing cases of text and scratch removal 
from high resolution colored images. These 
results indicate the effectiveness of the 
developed method in inpainting grey level and 
colored images. 
Convergence performance of the numerical 
method is displayed in Figure 5 for a 
representative inpainting case. It shows that the 
present model realizes a good convergence rate 
whereas the residual drops five orders of 
magnitude in approximately in 600 iterations 
The same trend is achieved for all the cases 
presented in the paper.  
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Figure2: Inpainting of old photograph

(c) Restored photograph 

(b) Image Mask (a) Old photograph          

Figure 3: Removing undesired superimposed text from colored image. 

(d) Restored result of Ref. (1) 
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Figure 5: Convergence performance of the solution residual  

. 
7 Conclusions  
 
In this paper we present a new numerical 
method for image inpainting based on the 
vorticity-stream function formulation of the 
Navier-Stokes Equations. The method employs 
a finite volume discretization and a Runge-
Kutta time stepping scheme with dissipative 
terms. The finite volume approach permits the 
inpainting of arbitrary and non-rectangular 
regions. The modification of the Poisson 
equation of the isophote intensity enables the 
construction and implementation of efficient 
numerical method exhibiting fast convergence. 
The stability analysis of the proposed numerical 
method has been performed to determine the 
maximum allowable time step for which the 
computation will be stable. It is shown that the 

expression for the maximum time step contains 
terms that are functions of the image isophote 
gradient and curvature. The method has been 
implemented for a number of grey level and 
colored images and the results indicate that the 
method is effective in terms of solution quality 
and computational efficiency.  
 
References: 
[1]  M. Bertalmio, G. Sapiro, C. Ballester and 

V. Caselles, Computer Graphics, 
SIGGRAPH 2000, pp. 417-424, July 
2000. 

[2]  Chan, T., Shen, J.  Non-Texture Inpainting 
by Curvature-Driven Diffusions (CCD) 
UCLA CAM TR 00-35, September 2000. 

[3]   M. Oliveira, B. Bowen, R. McKenna, and 
Y. -S. Chang Fast Digital Image 
Inpainting  

Figure 4. Scratch removal from colored image

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007     310



         In Proc. VIIP 2001, pp. 261.266, [CITY]: 
[PUB], 2001. 

[4]  M. Bertalmio, A. L. Bertozzi, and G. 
Sapiro, “Navier-Stokes, Fluid Dynamics, 
and Image and Video Inpainting” Proc. 
IEEE Computer Vision and Pattern 
Recognition (CVPR), 2001 

[5]  A.Telea.  An Image Inpainting Technique 
based on the Fast Marching Method. 
Journal of Graphics Tools, vol. 9, no. 1, 
ACM Press, 2004 

[6] Ashikhmin, M. Synthesizing Natural 
Textures, 2001 Symposium on Interactive 
3D Graphics, pages 217-226. 

[7]    Wei, L., Levoy, M. Fast Texture Synthesis 
using Tree-structured Vector 
Quantization. SIGGRAPH 2000 pp 479-
488. 

[8]  A. Efros and T. Leung, Texture synthesis 
by non-parametric sampling. In 
International Conference on Computer 
Vision, volume 2, pages 1033.8, Sep 
1999. 

[9]   S. Osher and J. Sethian, J. Comp. Phys., 
79, 12-49, 1988. 

[10] C. Hirsch “Numerical Computational of 
Internal and External Flow”, John Wiley, 
New York, 1990 

[11] A. Jameson, W. Schmidt, and E. Turkel , 
Numerical Solution of the Euler Equations 
by Finite Volume Methods Using Runge-
Kutta Time-Stepping Schemes, AIAA 
Paper 81-1259, 1981. 

 

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007     311


