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Abstract: - An approach for affective product design using a hybrid of tunable particle swarm optimization (PSO) and 
Kansei engineering is proposed. Customers’ emotive responses to a product are collected using a questionnaire 
designed on Kansei engineering principles. They are used to create models which can suggest design parameters for 
the product that may implicitly embody customers’ emotional preferences. These models are created by PSO 
algorithms, tuned to use the best possible velocity update equation and neighborhood configuration. Results of a pen 
case study are compared by means of the relative mean squared error with respect to the difference between predicted 
and known target values. Secondary differentiation of performance is obtained using the statistical measure of the 
coefficient of variance. 
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1   Introduction 
The affective product design is aimed at determining the 
relationships between consumers and products and to 
define the emotive properties that products intend to 
communicate through their physical attributes [4], [7], 
[13]. Kansei Engineering techniques support affective 
product design by linking the customer needs 
mathematically to the technical characteristics of the 
product [7], [13]. For mathematically connecting 
customer emotions mapped through Kansei words and 
the product properties methods like data mining [4], 
regression analysis, neural networks [6], evolutionary 
computation [1] and fuzzy sets [8] are used. 
     The fitness functions in Kansei engineering are often 
highly multi-modal. Therefore, swarm intelligence 
algorithms [5] [4] are appropriate for these types of 
modeling. The first such studies [14] and [11] applied 
particle swarm optimization (PSO) to analyze 
customers’ affective responses with regard to products, 
and use the results to propose relevant product design 
parameters. Here we continue our studies [14] and [11] 
by tuning different PSO configurations for determining 
an optimal Kansei model based on the most robust PSO 
neighborhood configuration. This approach will be 
applied in a case study of pen design. 
 
 

2  A Tunable Swarm Optimization –
Based Approach for Affective Product 
Design 

The following steps of affective product design are 
proposed: 

1. Determine product design parameters. 
2. Gather exemplars of existing products. 
3. Determine Kansei words. 
4. Gather data from product customers. 
5. Build Kansei model by PSO tuning. 
6. Select the optimal Kansei model based on the most 

robust PSO neighborhood configuration. 
7. Build a design model by the predicted generic 

Kansei word. 
8. Define the product design parameters. 

Data is collected by a questionnaire that is completed by 
potential clients of the product under consideration. The 
questionnaire contains three sections, first a set of 
feelings-based items, second, a set of product design 
parameter items and finally a single item that asks the 
respondent to judge the overall suitability of a product 
specimen. Each respondent is provided with multiple 
specimens of the product under consideration and for 
each, he/she is required to respond to all items on the 
questionnaire. Binary variable encodings are used to 
represent the responses to each pseudo-scaled 
questionnaire rating item. For example, if a 
questionnaire item, , can take values of 1,2,…,n, then 
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this would be encoded using n binary variables, 
, , … , . If a respondent assigned a value of  to 

item , then  would be assigned a value of 1, and all 
of the other binary variables would be assigned values of 
0. 

Once this data has been collected, Particle Swarm 
Optimization (PSO) [5] is used in two phases in an 
attempt to build a model that can suggest design 
characteristics of the product that would be emotionally 
pleasing to clients. 
     In the first phase, PSO is used to build a linear model 
that links the respondents’ impressions of overall 
suitability of the sample products to their emotive 
responses to items in the first part of the questionnaire. 
The model is intended to be able to predict how a 
respondent will judge overall suitability based on given 
emotive responses to the product. Inevitably the model 
will not perfectly match the data collected, however it is 
assumed that the model may be taken as a preferred 
measure of users’ assessments of overall suitability, 
instead of their actual responses. In the second PSO 
phase another linear model is created that links the data 
on design characteristics with the output of the model 
from the first phase. The coefficients resulting from this 
model are then used to suggest values for each design 
parameter. 

Particle Swarm Optimization is a sub-field of 
Evolutionary Computation that borrows ideas from 
natural social interactions in animal and human beings 
and adapts them for the purpose of solving optimization 
problems [5]. The PSO algorithm takes a set of 
candidate solutions to a problem and moves them 
through the search space R  of the optimization 
problem. Each particle changes its direction of 
movement based on the exchange of information with 
neighboring particles. The determination of 
neighborhoods is independent of particles’ positions in 
the search space, instead it is imposed by a directed 
graph structure. 

 Many variations on the basic PSO algorithm exist, 
and in this paper two parameters of the algorithm will be 
manipulated and studied. The first is the velocity update 
equation. Much PSO research employs the constriction 
factor velocity update equation [2], but recently there 
has been increased focus on the Fully-Informed Particle 
Swarm (FIPS) approach [9]. It uses information from all 
members in a particle’s neighborhood when updating the 
velocity, in contrast to the canonical constriction factor 
approach in which only the best performing neighbor is 
considered. 

 The second aspect of the PSO algorithm that is 
systematically varied is the neighborhood 
interconnection structure. This paper uses randomly 
generated neighborhoods [12] of varying size (n  and 

out-going connectivity (k). It also uses a linearly 
decreasing probability of total neighborhood re-
structuring [10]; an operation that completely re-
arranges the connecting directed edges between particles 
that dictate neighborhoods. 

The first PSO phase attempts to create a model 

 
That can predict a respondent’s suitability rating for a 
product given the emotive responses . 
Determining the  coefficients is the goal of the PSO 
application in this phase. In order to accomplish this, the 
PSO is programmed to optimize the following function: 

  
(1)

 
Here x  is the response to the  emotive 

questionnaire item for the  data vector and  is the 
response to the suitability question for that same vector. 
The calculation used to evaluate (1) is the equation for 
the average relative mean squared error (RMSE) of the 
prediction with respect to the actual target value. 
     In the first phase, PSOs optimize this function many 
times, using different algorithm parameter values. The 
’tuning’ of the algorithm is based on determining the 
best PSO parameters for solving this particular problem. 
Using the model arising from the best-performing PSO 
configuration, the second phase is performed. Its 
predictions are targets for the second linear model: 

, 
where are responses to the design attributes 
items on the questionnaire, and  are the weights to be 
determined by the PSO.   is expected to predict the 
output of the  selected from the first phase. The 
weights are then used to suggest choices for the product 
design parameters. Further details of this algorithm can 
be found in [14]. 

The PSO is subject to some stochastic instability 
inasmuch as it uses (uniform) pseudo-random numbers 
in its optimization algorithm. A scale-invariant/ 
dimensionless measure of this stochastic instability is 
provided by the “coefficient of variation” 
(C.V.=standard deviation / mean) of the relative mean 
squared errors (RMSE) over the 1000 runs of PSO. The 
optimization criterion RMSE (unlike MSE usually 
employed in similar papers in the literature) is also a 
scale-invariant/dimensionless measure of the solution at 
hand. This concept of RMSE is frequently applied in the 
analogous area of statistical estimation to determine the 
most desirable robust method amongst the ones 
competing [3]. The coefficient of variance would 
furthermore assist with differentiation in the situation 
observed in [11] where it was found that for the FIPS 
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settings, there were many neighborhood configurations 
that were similar in terms of the mean RMSEs. 
 
3   Case Study 

The tunable PSO two-phase approach to affective 
product design is illustrated by a real-world example 
involving pens as the product. Survey data was collect at 
Fatih University, Istanbul, Turkey. Students were asked 
questions, structured as outlined in the previous section, 
about their emotive impressions of 13 different pens. 
There were 49 respondents, thus resulting in 637 data 
vectors. 

For the tuning of the PSO, several neighborhood 
configurations were studied. Each configuration was 
employed with the canonical constriction factor PSO as 
well as with a FIPS-based PSO. The neighborhood 
parameters are: 20,30, … ,100 , and 
1,2, … ,10 . Total re-structuring was employed as a 

form of neighborhood dynamism. It was used with a 
linearly decreasing probability of application from 1.0 
down to 0.0 over the course of the algorithm run. Each 
run was terminated after 20000 function evaluations, and 
each complete PSO setting was run 1000 times in order 
to obtain statistically reliable results. As noted in [11], it 
was necessary to initialize the PSO particles within a 
Gaussian neighborhood of expert-assigned initial values 
in order to obtain consistent weight rankings, before 
proceeding to the second phase. 
     Figures 1 and 2 show the results obtained when the 
FIPS-based PSO was used. In fig.1 the mean RMSE 
over 1000 trials is plotted, and in fig. 2 the coefficient of 
variance is shown. Both plots share the same 
characteristic shape. The area of good results occurs 
between k=6 and k=10 for all values of n. 
 

 
Fig. 1. Mean RMSE in relation to n and k for FIPS 

 
Fig. 2. C.V. in relation to n and k for FIPS 

 
     Figures 3 and 4 show the results obtained when the 
canonical constriction factor PSO was used. In this case, 
the plots are dissimilar in shape. The RMSE plot slopes 
downward as n decreases and k increases. However, the 
coefficient of variance plot slopes slightly downwards as 
k increases, although there is a sharp drop in the region 
near k=1, and n=20.  

 
Fig. 3. Mean RMSE in relation to n and k for 

constriction factor PSO  

 
Fig. 4. C.V. in relation to n and k for  

constriction factor PSO 
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     The FIPS results show that for a given value of n, the 
value of k that produces the smallest RMSE also 
produces the smallest C.V. For the constriction factor 
PSO, other than for n=20,30, this pattern did not hold. In 
fact the values of k that produced the smallest RMSE 
and C.V., were on opposite extremities. These k values 
are given in Table 1. 

 
Table 1. k values producing the smallest mean RMSE 

and C.V. for different values of n. 
                                                         FIPS                       

n 20 30 40 50 60 70 80 90 100 

k (min. mean) 6 7 8 8 9 9 9 10 10 

k (min. c.v.) 6 7 8 8 9 9 9 10 10 

                                              Constriction Factor 

n 20 30 40 50 60 70 80 90 100 

k (min. mean) 10 10 10 10 10 10 10 10 10 

k (min. c.v.) 10 10 1 1 1 2 1 1 1 

Figures 5 and 6 show the variation in C.V. with 
respect to k for different levels of n. For the FIPS-based 
PSO there is a region around k=6 and k=9 where the 
minimum C.V. values can be found. At k=4, there is a 
clear correlation between increasing n and increasing 
C.V. For the constriction factor PSO, there is no 
apparent new information to be gleaned from the plots. 

Figures 7 and 8 localize in the (Mean RMSE, C.V.)-
plane the (n,k) points that produced the smallest Mean 
RMSEs within each level of n. In the case of FIPS, one 
outlier is omitted in order to better display the points on 
the plot. These figures emphasize the fact that the FIPS 
algorithm vastly out-performed the constriction factor 
PSO. This is clear by a comparison of the scales of the 
axes of these plots. 

 
 

Fig.5. FIPS: Variations of C.V. with respect to  
k for different levels of n. 

 
Fig. 6. Constriction factor: Variations of C.V. with 

respect to k for different levels of n.  

 
Fig. 7. Lowest RMSE and corresponding C.V. for 

different n values for FIPS 

 
Fig. 8. Lowest RMSE and corresponding C.V. for 

different n values for constriction factor 
 

The best-performing FIPS configuration in terms of 
mean RMSE was at n=70, k=9. The predictions of the 
model created by this setting were used as  targets for 
the second PSO phase. The same configuration was 
arbitrarily used to run the second phase optimization. 

The model produced by the second phase of PSO 
suggested design parameters that were essentially the 
same as in our previous study (cf. Table 2). The only 
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difference was that the proposed pen color is now 
``blue’’ in [11] it was ``mixed color’’. This development 
is not troubling since in both cases the weights 
associated with each of these options are quite similar. 

 
Table 2. Design Parameters Determined by  

PSO with FIPS Configuration 
Length Value Volume Value 
short 0.018 thin 0.240 
average -0.0233 average 0.370 
long 0.151 fat 0.235 

Color Value Form Value 

mixed colors 0.515 completely 
straight 0.114 

white 0.253 almost straight 0.294 
blue 0.562 semi-curved 0.304 

green 0.334 moderately 
curved 0.197 

yellow 0.201 very curved 0.746 

 
 
4   Conclusions 
This paper expanded on previous research concerning 
the application of a hybrid approach that combines 
Particle Swarm Optimization and Kansei Engineering, to 
the problem of affective product design [11], [14]. Key 
improvements were the use of significantly more 
experimental trial runs, 1000 instead of 100, and the use 
of the statistical measure of the coefficient of variance to 
identify stable neighborhood configurations, in what 
would otherwise appear as similar performance results. 

One important observation arising out of the 
calculation of the C.V. is that although the best 
constriction factor configuration was able to perform 
comparably to that of FIPS, the stability of the 
performance was not at all the same. The best 
constriction setting had a C.V. on the order of 1% 
whereas that of FIPS was on the order of 0.1%. The 
FIPS algorithm is also better behaved in the sense that 
for a given n, values of k that produce the smallest mean 
RMSEs also produce the smallest C.V. This was not the 
case for most of the constriction factor settings. 

Future research in this area could involve the 
application of PSO to train neural networks that embody 
the models required in both phases in place of the simple 
linear models now in use. 
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