A Fuzzy Decision Making Model for Determining Company Profile in Allocation of Public Funding for Industrial Development Projects

MIGUEL D. ALFARO, JUAN M. SEPÚLVEDA, CARLO A. CASORZO Department of Industrial Engineering University of Santiago of Chile 3769 Ecuador Ave. Santiago, Chile. PO Box 10233

Abstract: - In this article, a model for classifying companies according to size measures is presented along with an application to Chilean industry. Current variables, such as Yearly Net Sales, Number of Workers, and Total Assets, as well as current classification sets, namely Micro-enterprise, Small and Medium - Enterprise (SME), and Large-Enterprise, are used. The model was applied on a sample of 330 companies and the results show differences with current classification methods used by a public agency in charge of funding industrial development and research projects. By validating the model against the outcomes of current decision making, a better public's perception of a right classification decision for allocating funds was obtained. A fuzzy logic classification model of this kind may useful for allocating funds either to companies or individuals when traditional crisp numbers and criteria are difficult to handle.

Key-Words: - Fuzzy logic, Fuzzy classification, Company profile.

1 Introduction

The use of fuzzy logic (FL) for classification processes has been applied in several domains and to a great variety of problems. In [6], authors used FL for classifying product quality characteristics in chemical engineering systems; in [4] FL was applied in the classification of consumers of imported fruit in China, measuring their consumption values; a fuzzy rule-based classification model to define soil quality based on soil microbial biomass, N-mineralization, enzyme activity data and soil organic matter was proposed in [5]; in [3], authors used FL to create a new algorithm to extract sets of rules from data for classification problems; in [7], authors used FL for selecting different cotton types, among others. In this paper, we use fuzzy logic for classifying companies according to some measure of size. In the introducing section, the problem to be solved and common different criteria for measuring the size of a company are presented. Next the linguistic variables with their corresponding fuzzy sets and an application to the industrial sector are discussed; finally, results and conclusions are presented.

The interest for a company classification model arises from the lack of a unique criterion. That is, an adequate variable and the limits for that variable must be determined for each segment of companies. Besides, the size of a company is a classic variable used in economics for designing development policies and for allocating funds according to an economic profile.

In the region where the study is conducted, there are several public programs for helping companies with their technological development; the objectives and funding of these programs depend on the type of applying company. Currently, the classification method considers some variable: most used are net sales and number of workers. As an example, a company with 249 workers is classified as Medium size and if it has 250 is considered as Large. As seen, the crisp current method may be questionable and it can be even more complicated when another variable must be used. From the public's viewpoint, unsatisfaction and criticism arise towards the public agency since for a marginal change in some variable, a significant decrease, if nothing at all, in funding for projects can be obtained.

In the literature, different definitions for determining the size of a company can be found. The most commonly used variables are the number of workers, fixed asset investment, sales, among others. In the country, only the sales level is considered but there have been many cases where this criterion has proved to be inconvenient for allocating resources, especially in new small fast growing high-tech based companies searching for seed capital.

In this article, the use of fuzzy logic as a tool for classifying companies is presented. That is, a *fuzzy linguistic model* (FLM) including several criteria for determining company size is developed.

For classification problems, fuzzy logic is a mapping process from an input space onto an output space by using membership functions and linguistic rules. Thus, the degree of membership of an element to a class is expressed by a number in the interval [0,1] as opposed to crisp measures where the membership is a dichotomic measure.

The remainder of this paper is organized as follows. In Section 2, a full description of the fuzzy model used is given, including the classification variables, the fuzzification process, the statement of the decision rules and the defuzzification process. The implementation details of the model are shown in Section. Conclusions are given in Section 4.

2 Fuzzy Model Description

2.1 Classification Variables

In order to define the size of a company, several variables such as fixed capital, sales level, profitability, number of workers, among others, can be used. In this work, we use variables currently used Chilean Corporation for bv the Industrial Development (CORFO), a public state agency in charge of promoting industrial development in the country, specially focused on SMEs. Also we use other variables that have been suggested in the literature [1]. Variables in use by the corporation are net yearly sales, number of workers, and total assets. The classification, according to these variables by separate, is shown in Table 1.

SIZE	SALES (UF) ¹	WORKERS	ASSETS (UF)
MICRO	Up to 2,400	Up to 10	Up to 38,000
SME	2,401 to 100,000	11 to 200	38,001 to 380,000
LARGE	Over 100,000	Over 200	Over 380,000

 Table 1. Classification of companies according to size for developing the model

For the FLM, three fuzzy sets for the input variables have been selected. For *yearly net sales*, fuzzy sets are *low*, *normal and high*. For *number of workers*, the corresponding sets are *few*, *normal*, *and many*. For *total assets*, the fuzzy sets are *low*, *normal*, *high*.

By using the FLM, a classification for the main three classes of company sizes can be obtained. These classes will be the output set of the model: *micro, small and medium, and large enterprise*.

Once the fuzzy sets are chosen, the membership function for each of them must be established. The membership function maps an input element onto a value in [0,1] thus showing the level of membership to the fuzzy set. The shape of the function should be elicited from the decision makers(s) and can be gaussian, sinusoidal, triangular, or trapezoidal type. In this work, without loss of generality, we use the trapezoidal type for the simplicity of establishing membership values when asking decision makers (DM). That is, DMs feel comfortable with *linear thinking* as variables get closer or further from the ideal region.

A trapezoidal membership function is specified by four parameters $\{a, b, c, d\}$ as shown in Fig. 1 and its expression in Equation 1.

The procedure for determining the parameters of the membership function is the same for each of the selected variables. Next, an example for the case of *Yearly Net Sales* variable and fuzzy sets: *low, normal, and high,* is given.

Fig. 1. Trapezoidal membership function.

$$f(x; a, b, c, d) = \max\left\{\min(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}), 0\right\}.$$
 (1)

Step 1: the current classification scheme used by CORFO, which is based on dichotomical reasoning (Table 1), defines sharp values for the classes. In this work, these values are defined as the intersections between the different fuzzy sets of the variable as shown in Fig. 2.

Step 2: in order to obtain parameters a and b, the distance between each sales level and the 2,400 UF level is calculated. For the a parameter, only the sales values of those companies currently classified as *micro* are taken. Then, a range where *micro* enterprises are considered to be close to *small and medium* is defined. Thus a value of a equal to 2,363 UF is determined. Finally, the parameter b value is 2,437 UF due to the symmetrical property of the trapezoidal function.

Step 3: in order to obtain parameters c and d, the distance between each sales level and the 100,000 UF level is calculated. Next we proceed the same way as in *Step 2*. Thus, the value of c is 90,340 UF and the value of d is 109,660 UF. Table 2 summarizes the results of this process for each variable.

In Fig. 2 the membership function for the *Sales* variable and its corresponding fuzzy sets are

¹ UF (Unidad de Fomento) is an inflation-free parity index, where 1 UF is approximately USD 35.85 (August 2007).

presented. For the other variables, the same procedure is followed.

Variablas	Parameters									
variables	а	b	С	d						
Yearly Net Sales (UF)	2,363	2,437	90,340	109,660						
N° of Workers	12	50	160	440						
Total Assets (UF)	36,746	40,652	320,125	412,052						

 Table 2. Parameter values of fuzzy sets for each input variable.

2.2 Fuzzification

Fuzzification is referred as to the modeling stage where we determine the range to which a sample of input data belongs to for each fuzzy set, by using the membership function. For a known input vector defined as: $E_0 = (Sales_0, Workers_0, Assets_0)$, the membership values must be calculated for all fuzzy sets associated with each linguistic variable. For example, if $E_0 = (17,115; 219; 288,173)$ a sales level of 17,115 UF has a membership value of 1 in the fuzzy set normal, a number of workers level of 219 has a membership value of 0.78 in the fuzzy set normal and of 0.22 in the fuzzy set many. Last, a total assets level of 288,173 UF has a membership value of 1 in the fuzzy set normal. Next, it follows the *defuzzification* stage in order to obtain the degree of membership of the output sets: micro, small and medium, and large enterprise. For this, decision rules construction is needed.

2.3 Decision Rules

In a fuzzy linguistic model, decision rules give reasoning qualities for chaining fuzzy input sets with fuzzy output sets. These rules correspond to a collection of linguistic production rules well known in the expert systems area of artificial intelligence. As an example, a typical rule can be as follows:

IF Sales is high AND Number of Workers is normal AND Total Assets is high THEN Size is large.

The use of fuzzy operators is necessary in order to specify the relationship between the fuzzy output sets with the rule's *antecedent* (left hand side). Most common operators, as the ones shown in the example, are the *OR* operator representing set union and the *AND* operator representing set intersection. Also the *NOT* operator which represents the complement set. In the example above, the intersection of all sets is needed in order to fire the rule, as shown in equation 2.

A and B and C = min { $\mu_A(x), \mu_B(x), \mu_C(x)$ }. (2)

Where $\mu_A(x)$, $\mu_B(x)$, $\mu_C(x)$ are the membership values of the sets A, B and C respectively, which have been obtained from the trapezoidal membership functions defined earlier. The *min* value corresponds to the degree of compliance of each linguistic rule. For example, in the rule,

IF Sales is normal AND Number of Workers is normal AND Total Assets is normal THEN Size is large,

The degree of compliance is 0.78. The linguistic rules must be established from existing knowledge about company classification by size. As there are three fuzzy sets for the *Sales* variable, three for *Number of Workers*, and three for *Total Assets*, there will be 27 possible combinations for the rule antecedents. In our case, the rules were established by experts of CORFO, the public agency in charge of industry development in Chile which depends on the Economics Ministry. These rules are presented in a tabular form in Appendix 1.

2.4 Defuzzification

For a given company, there may be more than two linguistic rules with different *consequences* since the value of an input variable may fall into the fuzzy interval leading to two different conditions. To avoid this problem, we need a *Defuzzification* mechanism in order to obtain a unique size. In this work, the *max method* is used. That is, the rule with the highest degree of compliance among all possible firings is then chosen in order to generate exactly one company size.

SIZE	CRITERIA									
SILE	Sales	N° of Workers	Total Assets							
MICRO	15	62	11							
SME	245	249	76							
LARGE	70	19	243							
TOTAL	330	330	330							
Table 3 Current number of companies per class (Source:										

Table 3. Current number of companies per class (Source: CORFO 2007).

In Table 3 the number of classified companies (330 in total) by using current agency criteria is shown. As seen, the size class can significantly differ

when different criteria are used. For example, if we consider *number of workers*, 62 companies are *micro* size whereas by *Total* Assets are 11 companies and by *Sales is 15*. The same happens with *Large* size where the number of companies is 70 if *Sales* is considered, 19 if *Number of Workers* is considered, and 243 if *Total Assets* is used. One practical consequence of such an inconsistency is wrong classification and allocation of public resources.

3 Implementation

The model was programmed with Visual Basic 6.0 TM and Access 2003 TM for the database with 330 industrial companies. Results are summarized in Table 4.

Degree of membership	MICRO	SME	LARGE
0.500-0.700	1	7	23
0.701-0.999	3	9	24
1.000	11	38	214
Subtotal	15	54	261
Total		330	

 Table 4. Summary of results by using fuzzy the classification model.

It can be observed that with a degree of membership higher than 0.5, a number of 15 companies are classified as Micro, 54 companies as SME and 261 as Large. In order to determine the degree of similarity between classification schemes by using variables separately and the classification obtained by the fuzzy model, we calculated the number of companies that coincide with its class by using euclidean distance. In the first case, we obtained 139, 43, and 308 coincidences according to the Sales, Number of Workers, and Total Assets criteria, respectively. By using euclidean distances, we obtained the distances 270, 314, 37 with respect to criteria Sales, Number of Workers, and Total Assets respectively. It is concluded that Total Assets is the current variable that approximates the most to the model-based classification. On the other hand, the variable Number of Workers is the one that differs most from the model results. In Appendix 2, the obtained results are shown. Because of a matter of space, only the first 48 results are shown, from a total of 330 results.

4 Conclusions

Determining the size of a company is a difficult task due to the arbitrary definition of ranges for the size as well as for the variables used in the classification. The method used in this work solves the range problem and it allows for the integration of different variables considered to be important to the classification task. The values used in the work are actual for the context problem presented here but it is believed the method may be useful in many other situations dealing with multicriteria classification. In large decision problems, with many variables and values, expert systems type of decision support may be used. For the particular application of this work, *Total Assets* is the current criteria which best resembles the fuzzy model classification.

References:

- L. Boedo and A. Calo, Incidencia del Tamaño Sobre el Comportamiento Financiero de la Empresa: Un Análisis Empírico con Pymes Gallegas, *Revista Gallega de Economía*, Vol. 10, 2001, pp. 1-23.
- [2] European Commision, *The European Observatory for SME*, Sixth Report, Luxemburg: Office for Official Publications of the European Communities, 2000.
- [3] R. Irrizarry, Fuzzy Classification With an Artificial Chemical Process, *Chemical Engineering Science*, Vol. 60, No. 2, 2007, pp. 399-412.
- [4] X. Sun and R. Collins, The Application of Fuzzy Logic in Measuring Consumption Values: Using Data of Chinese Consumers Buying Imported Fruit, *Food Quality and Preference*, Vol. 18, No. 3, 2007, pp. 576-584.
- [5] D. Tscherko, E. Kandeler and A. Bárdossy, Fuzzy Classification of Microbial Biomass and Enzyme Activities in Grassland Soils, *Soil Biology and Biochemistry*, Vol. 39, No. 7, 2007, pp. 1799-1808.
- [6] G. Tsekouras, H. Sarimveis, R. Costas and G. Bafas, A Fuzzy Logic Approach for the Classification of Product Qualitative Characteristics, *Computers & Chemical Engineering*, Vol. 26, No. 3, 2002, pp. 429-438.
- [7] B. Xu, D.S. Dale, Y. Huang and M.D. Watson, Cotton Color Classification by Fuzzy Logic, *Textile Research Journal*, Vol. 72, No. 6, 2002, pp. 504-509.

APPENDIX 1
Matrix of Fuzzy Rules for the Design of the Linguistic Model

	ANTECEDENT									CONSEQUENT
RULES		Sales			N° of Worke	rs]	Total Asset	ts	CONSEQUENT
	Low	Normal	High	Few	Normal	Many	Low	Normal	High	Size
Rd1	•			•			•			MICRO
Rd2	•				•		•			MICRO
Rd3	•					•	•			MICRO
Rd4	•			•				•		MICRO
Rd5	•				•			•		MICRO
Rd6	•					•		•		SME
Rd7	•			•					•	SME
Rd8	•				•				•	SME
Rd9	•					•			•	SME
Rd10		•		•			•			MICRO
Rd11		•			•		•			SME
Rd12		•				•	•			SME
Rd13		•		•				•		SME
Rd14		•			•			•		SME
Rd15		•				•		•		SME
Rd16		•		•					•	LARGE
Rd17		•			•				•	LARGE
Rd18		•				•			•	LARGE
Rd19			•	•			•			SME
Rd20			•		•		•			SME
Rd21			•			•	•			SME
Rd22			•	•				•		LARGE
Rd23			•		•			•		LARGE
Rd24			•			•		•		LARGE
Rd25			•	•					•	LARGE
Rd26			•		•				•	LARGE
Rd27			•			•			•	LARGE

APPENDIX 1				
The First 48 From a	Total of 330	Results Obtained b	y Using the Fu	zzy Model

Company	Sales	Size by Sales	Assets	Size by Assets	N° of Work ers	Size by Work ers	Size by Model	Degree	Company	Sales	Size by Sales	Assets	Size by Assets	N° of Worker S	Size by Work ers	Size by Model	Degree
Company 1	90340	SME	1307957	Large	55	SME	LARGE	1	Company 72	37837	SME	620262	Large	19	SME	LARGE	1
Company 2	100065	Large	315200	SME	262	Large	LARGE	0.5034	Company 73	24597	SME	408422	Large	20	SME	LARGE	0.9605
Company 3	23092	SME	384350	Large	12	SME	LARGE	0.6987	Company 74	9244	SME	162786	SME	7	Micro	SME	1
Company 4	52703	SME	858118	Large	161	SME	LARGE	0.9875	Company 75	35418	SME	581562	Large	40	SME	LARGE	1
Company 5	5396	SME	101216	SME	70	SME	SME	1	Company 76	52266	SME	851136	Large	64	SME	LARGE	1
Company 6	1111	Micro	27778	Micro	9	Micro	MICRO	0.75	Company 77	86933	SME	1253432	Large	260	Large	LARGE	1
Company 7	5289	SME	99497	SME	92	SME	SME	1	Company 78	30110	SME	496636	Large	57	SME	LARGE	1
Company 8	25065	SME	415917	Large	129	SME	LARGE	1	Company 79	14568 4	Large	517051	Large	170	SME	LARGE	0.875
Company 9	8496	SME	150815	SME	27	SME	SME	1	Company 80	45128	SME	736919	Large	33	SME	LARGE	1
Company 10	6667	SME	121542	SME	53	SME	SME	1	Company 81	69634	SME	976649	Large	16	SME	LARGE	1
Company 11	2672	SME	57626	SME	34	SME	SME	1	Company 82	18166	SME	305531	SME	4	Micro	SME	1
Company 12	1250	Micro	31250	Micro	7	Micro	MICRO	1	Company 83	24408 9	Large	812267	Large	104	SME	LARGE	1
Company 13	20051	SME	335687	SME	60	SME	SME	0.8307	Company 84	67044	SME	935207	Large	255	Large	LARGE	1
Company 14	99	Micro	14980	Micro	3	Micro	MICRO	1	Company 85	43974	SME	718455	Large	77	SME	LARGE	1
Company 15	15937	SME	269859	SME	72	SME	SME	1	Company 86	30690 3	Large	1000708	Large	40	SME	LARGE	1
Company 16	2460	SME	54241	SME	22	SME	SME	1	Company 87	1158	Micro	21440	Micro	3	Micro	MICRO	1
Company 17	17115	SME	288713	SME	219	Large	SME	0.7375	Company 88	51002	SME	830904	Large	10	Micro	LARGE	0.5
Company 18	19025	SME	319280	SME	90	SME	SME	1	Company 89	35045	SME	575595	Large	36	SME	LARGE	1
Company 19	27375	SME	452871	Large	34	SME	LARGE	1	Company 90	39732	Large	1271977	Large	31	SME	LARGE	1
Company 20	12697	SME	218030	SME	231	Large	SME	0.8875	Company 91	0 45511	SME	743051	Large	100	SME	LARGE	1
Company 21	4461	SME	86254	SME	91.2	SME	SME	1	Company 92	28611	SME	472653	Large	80	SME	LARGE	1
Company 22	156279	Large	65820	SME	484	Large	LARGE	1	Company 93	42997	SME	702820	Large	16	SME	LARGE	1
Company 23	36606	SME	600564	Large	96	SME	LARGE	1	Company 94	61111	SME	992653	Large	180	SME	LARGE	0.75
Company 24	66321	SME	923638	Large	145	SME	LARGE	1	Company 95	19843	Large	675290	Large	92	SME	LARGE	1
Company 25	27856	SME	460575	Large	102	SME	LARGE	1	Company 96	21532	Large	725973	Large	110	SME	LARGE	1
Company 26	5289	SME	99497	SME	34	SME	SME	1	Company 97	4 24882	SME	412986	Large	25	SME	LARGE	1
Company 27	29444	SME	485986	Large	87	SME	LARGE	1	Company 98	10318	Large	389544	Large	129	SME	LARGE	0.6646
Company 28	35296	SME	579617	Large	43	SME	LARGE	1	Company 99	1 29181	SME	481773	Large	50	SME	LARGE	1
Company 29	32586	SME	536248	Large	0	Micro	LARGE	1	Company 100	37243	SME	610763	Large	36	SME	LARGE	1
Company 30	301776	Large	369852	SME	67	SME	LARGE	0.5409	Company 101	30000	Large	9080000	Large	56	SME	LARGE	1
Company 31	42166	SME	689532	Large	60	SME	LARGE	1	Company 102	00 46611	SME	760653	Large	34	SME	LARGE	1
Company 32	111824	Large	148523	SME	250	Large	LARGE	1	Company 103	3482	SME	577692	Large	12	SME	LARGE	1
Company 33	196224	Large	159632	SME	81	SME	LARGE		Company 104	3125	SME	64875	SME	9	Micro	SME	0.75
Company 34	2883	SME	61008	SME	4	Micro	SME	1	Company 105	24611	SME	408653	Large	26	SME	LARGE	0.963
Company 35	4255	SME	82959	SME	5	Micro	SME		Company 106	43226	SME	706490	Large	58	SME	LARGE	1
Company 36	27633	SME	457007	Large	38	SME		1	Company 107	50000	SME	814875	Large	30	SME	LARGE	1
Company 37	3161	SME	65457	SME	9	Micro	SME	0.75	Company 108	3160	SME	65440	SME	8	Micro	SME	1
Company 38	72226	SME	1018131	Largo	23	SME		1	Company 100	44833	SME	732208	Large	56	SME		1
Company 30	61320	SME	005000	Large	117	SME		1	Company 110	5075	SME	96075	SME	7	Micro	SME	1
Compony 40	75222	SME	1067942	Large	63	SME		1	Company 111	4094	SME	80212	SME	6	Micro	SME	1
Company 40	15333	SIVIE	747004	Large	60	SIVIE		1	Company 111	4084	SIVIE	794007	SIVIE	0	IVIICTO	SIVIE	1
Company 41	45775	SME	70000	Large	80	SME	LAKGE	1	Company 112	4/88/	SME	/8106/	Large	33	SME	LARGE	1
Company 42	48445	SME	789994	Large	80	SME	LAKGE	1	Company 113	57111 12147	SME	928653	Large	207	Large	LARGE	0.5875
Company 43	3581	SME	72173	SME	Z		SME	1	Company 114	0	Large	444411	Large	103	SME	LARGE	1
Company 44	894257	Large	97854	SME	83	SME	LARGE	1	Company 115	27525	SME	455268	Large	16	SME	LARGE	1
Company 45	859	Micro	22524	Micro	3	Micro	MICRO	1	Company 116	27411	SME	453453	Large	63	SME	LARGE	1
Company 46	1044	Micro	22954	Micro	3	Micro	MICRO	1	Company 117	27112	SME	448662	Large	31	SME	LARGE	1