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Abstract: - The pulsatile flow of blood through a stenosed artery under the influence of external periodic body 

acceleration is studied. The effect of non-Newtonian nature of blood in small blood vessels has been taken into 

account by modeling blood as a Casson fluid. The non-linear coupled equations governing the flow are solved 

using perturbation analysis assuming that the Womersley frequency parameter is small which is valid for 

physiological situations in small blood vessels. The effect of pulsatility, stenosis, body acceleration, yield stress of 

the fluid and pressure gradient on the yield plane locations, velocity distribution, flow rate, shear stress and 

frictional resistance are investigated.  It is noticed that the effect of yield stress and stenosis is to reduce flow rate 

and increase flow resistance. The impact of body acceleration is to enhance the flow rate and reduces resistance to 

flow. 
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1             Introduction  

External accelerations cause disturbance quite often 

in human life. In situations like traveling in vehicles 

or aircraft, operating jackhammer or the sudden 

movements of the body during sports activities, the 

human body experiences external body acceleration. 

Prolonged exposure to such external body 

acceleration may cause serious health problem such 

as headache, increase in pulse rate and loss of vision 

on account of disturbances in blood flow [1-2]. It is 

therefore desirable to set a standard for short and 

long term exposures of human being to such 

acceleration. If the response of the human system to 

such accelerations is understood properly, the 

controlled accelerations can be used for therapeutic 

treatments, development of new diagnostic tools and 

for better designing of protective pads [3-4]. It is 

quite common to find localized narrowing, 

commonly called stenosis, caused by intravascular 

plaques in the arterial system of humans or animals. 

This stenosis disturbs the normal pattern of blood 

flow through the artery. Recognizing of the flow 

characteristics in the vicinity of stenosis may help to 

further understanding of some major complications 

which can be arise such as, an ingrowths of tissue in 

the artery, the development of a coronary thrombosis 

etc. The investigations of blood flow through arteries 

are of considerable importance in many 

cardiovascular diseases particularly atherosclerosis.  

Due to physiological importance of body 

acceleration many theoretical investigations have 

been carried out for the flow of blood under the 

influence of body acceleration with and with out 

stenosis. Sud and Sekhon [5] studied the pulsatile 

flow of blood through a rigid circular tube subject to 

body acceleration, treating blood as a Newtonian 

fluid. Misra and Sahu [6] analysed the flow of blood 

through large arteries under the action of periodic 

body acceleration. Belardinelli et al. [7] proposed 

mathematical models for various forms of body 

acceleration. Usha and Prema [8] studied the 

pulsatile flow of particle-fluid suspension model of 

blood under the presence of periodic body 

acceleration.  Using  Laplace  and  Hankel transforms 

Elshehawey et al. [9] studied the effect of body 

acceleration on pulsatile flow of  blood through a 

porous medium by  treating blood as a Newtonian 

fluid. Later El-Shahed [10]  extended this study for a 

stenosed porous medium.  

In all these investigations blood is modelled as a 

Newtonian fluid. It is reported that the rheological 

properties of blood and its flow behaviour through 

tubes of varying cross section play an important role 

in understanding the diagnosis and treatment of many 
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cardiovascular diseases [11, 12,13]. It is well known 

that blood being a suspension of cells, behaves as a 

non-Newtonian fluid at low shear rates and during its 

flow through small blood vessels, especially in 

diseased states when clotting effects in small arteries 

are present. Experiments conducted on blood 

[14,15,16] with varying heamatocrits, anticoagulants, 

temperature etc suggested that the behaviour of blood 

at low shear rates can best be described by Casson 

model [17,18]. Aroesty and Gross [19, 20] used 

Casson theory in their mathematical analysis to study 

the pulsatile flow of blood vessels with application to 

microcirculation. Chaturani and Palanisamy [21,22] 

analysed the pulsatile flow of blood under the 

influence of periodic body acceleration by assuming 

blood as a Casson fluid and also a Power law fluid by 

using finite difference scheme. Majhi and Nair [23] 

studied the pulsatile flow of blood under the 

influence of body acceleration treating blood as a 

third grade fluid. Sarojamma and Nagarani [24] 

studied the flow of a Casson fluid in a tube filled 

with porous medium under periodic body 

acceleration with applications to artificial organs. In 

recent paper Mandal et al., [25] developed a two 

dimensional mathematical model to study the effect 

of externally imposed periodic body acceleration on 

non-Newtonian blood flow through an elastic 

stenosed artery where the blood is characterized by 

the generalized power-law model.  

In view of the above, a mathematical model is 

developed to study the pulsatile flow behaviour of 

blood in an artery under stenotic condition subject to 

both the pulsatile pressure gradient due to normal 

heart action and of periodic body acceleration. Blood 

is modelled as a Casson fluid by properly accounting 

for yield stress of blood. The combined effect of 

pulsatility, stenosis, body acceleration, yield stress on 

the flow parameters is investigated.   

 

 

2 Mathematical Formulation 

         

Consider the pulsatile flow of blood in presence of 

externally imposed periodic body acceleration in an 

artery with mild stenosis. We consider the flow is 

axially symmetric, laminar, fully developed where 

the flowing blood is modelled as a Casson fluid. 

Following Young  [26]  the stenotic protuberance is 

assumed to be an axisymmetric surface generated by 

a cosine curve.  The geometry of the stenosis is as 

shown in Fig.1 and is given by    
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where 4 0z  is the length of the stenotic region, 2δ is 

the maximum protuberance of the stenotic form of 

the artery wall and  R0 is the radius of the normal 

artery. The periodic body acceleration F( t ) in the 

axial direction is given by  

)(cos)( 0 φω += tatF b                         ----(2a)                                    

where a0 is its amplitude, bb fπω 2= , bf  is its the 

frequency in Hz, φ  the lead angle of )(tF  with 

respect to the heart action. The frequency of body 

acceleration bf  is assumed to be small, so that wave 

effects can be neglected.  The pressure gradient at 

any z  may be represented as follows 
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where A0 is steady component of the pressure 

gradient, A1 is amplitude of the fluctuating 

component and pp fπω 2= , fp is the pulse 

frequency. Both A0 and A1 are functions of z . It can 

be shown that the radial velocity is very small in 

magnitude so that it may be neglected for problem 

with mild stenosis. The specified momentum 

equation for the flow in cylindrical coordinate system 

is given by  
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Where r and z  denote the radial and axial 

coordinates respectively and ρ  denotes  density, u   

axial velocity of blood, t  time, p   pressure and τ  

the shear stress. For Casson fluid the relation 

between shear stress and shear rate is given by [27] ,                         
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where yτ  denotes yield stress and µ , the Casson’s 

viscosity. These relations correspond to vanishing of 

velocity gradients in regions where the shear stress 

τ  is less than the yield stress yτ , this in turn 

implies a plug flow whenever yττ ≤ .  

The boundary conditions appropriate to the problem 

under study are the no slip condition   

  (i) u = 0 at r =R( z )                 -----(5a) 

  (ii)  τ  is finite at r = 0                                -----(5b) 
                                  

Introducing the non-dimensional variables  
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The non-dimensional momentum equation (3a) 

becomes 
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)/(

2

02

ρµ

ω
α

Rp= , α  is called Womersley 

frequency parameter. 

Equation (4) can be written as  
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The boundary conditions (5a, b) reduce to 

(i)   u = 0 at r = R(z)                                ----(9a)       

(ii)  τ is finite at r = 0                                       ----(9b) 
The geometry of the stenosis in non-dimensional 

form is given as  
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3. Method of Solution 

On using perturbation method, the velocity u, shear 

stress τ , plug core radius Rp and plug core velocity 

up are expanded as follows in terms of 
2α (where 

2α <<1) 
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Substituting (11a) and (11b) in equation (7) and 

equating the constant term and 
2α  term we get  
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Integrating equation (12) and using the boundary 

condition (9b) we obtain  

    rtf )(0 −=τ                  ----(14)   

where   

)](cos)cos1([)( φω +++= tBtetf .   ----(15) 

Substituting (11a) and (11b) in (8) we get 
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Integrating equation (16), using the relation (14) and 

the boundary condition (9a) we obtain 
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where )(/2 tfk θ=  

The plug core velocity u0p can be obtained from 

equation (18) as  
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where R0p is the first approximation plug core radius. 

Neglecting the terms of o( 2α ) and higher powers of 

α in equation (11c) pR0 can be obtained from (14) 

as  
2

0 )(/ ktfR p ≡=θ          -----(20) 

Similarly the solution for 1τ , u1, u1p can be obtained 
using equations (13), (17) and (18) as 
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Using equation (11),  the total velocity distribution 

and  shear stress can be written as 
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where C  = )(/)( tftf ′  

The second approximation plug core radius pR1  can 

be obtained by neglecting terms of o( 4α )and higher 

powers of α in equation (11c) as  
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With the help of equations (26), (20) and (11c), Rp  

can be given by  
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The volumetric flow rate Q is given by  
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4 Results and Discussion  
 

The objective of the present investigation is to study 

the combined effect of body acceleration, stenosis 

and yield stress of the fluid on the pulsatile flow of 

blood through a circular cylinder by modeling blood 

as a Casson fluid. The governing equations of the 

flow are solved using perturbation analysis assuming 

that the Womersley frequency parameter is small 

which is valid for physiological situations in small 

blood vessels. The effect of pulsatility, stenosis, body 

acceleration, yield stress of the fluid and pressure 

gradient on velocity distribution, plug radius, plug 

flow velocity, shear stress, flow rate, and frictional 

resistance are investigated.  The results are discussed 

by computing the flow variables at different values of 

yield stress of the fluid θ , body acceleration 
parameter B, stenotic radius δ , pressure gradient e 
and for different values of time t by fixing the other 

parameters occurred in the flow. 

         Axial velocity profiles at the peak of the 

stenosis (z = 0) for a fixed value of pressure gradient 

and for different values of B, θ, δ and t are shown in 
Fig.2.  It is observed that the body acceleration 

parameter B brings in quantitative and as well as 

qualitative changes in velocity profiles (Fig. 2a).  In 

the presence of body acceleration velocity is more 

and with increase in body acceleration the plug 

region shrinks and hence more flow takes place. For 

the same values of pressure gradient and yield stress  
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when the body acceleration is 2, the magnitude of 

velocity is almost doubled to the case when body 

acceleration is absent. In the absence of yield stress 

(Fig.2b) i.e. when the fluid is Newtonian (valid in 

large vessels) velocity rises sharply with point of 

maximum on the axis of the tube. The presence of 

yield stress reduces velocity and the velocity profile 

is blunt in the mid region of the tube indicating plug 

flow.  As yield stress increases, the magnitude of 

velocity is very much reduced and thus the plug flow 

becomes prominent. In the absence of body 

acceleration and yield stress the velocity is lesser 

than the case when body acceleration is present.  For 

a fixed value of yield stress and body acceleration the 

axial velocity decreases with time in a rigid tube as 

well as in a stenosed tube and also observed that the 

presence of stenosis qualitatively decreases the 

velocity (Fig. 2c). In a stenosed tube (when δ = 0.2) 

the magnitude of velocity is reduced four times to the 

magnitude of velocity in a rigid tube. The combined 

effect of stenosis and yield stress is to enhance the 

plug flow region. 

      The plug radius pattern is depicted in Fig.3 for 

different variations of various flow parameters.  The 

effect of pulsatility on yield plane is that the 

locations of yield plane are changed and hence vary 

during the course of motion. In the absence of body 

acceleration plug radius is minimum at t = 0° and 
starts increasing in the first half of the cycle attaining 

maximum value at t = 180° and then starts decreasing 
in the second half cycle. In the presence of body 
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acceleration it is interesting to note that there are two 

points of maximum. In first half cycle the plug radius 

rises from a minimum value and reaches a maximum 

at t = 120° and starts decreasing with point of 
minimum at t = 180° and the same behaviour is 
repeated in the second half. When the value of yield 

stress is more the width of the plug flow region is 

more and hence the flow is significantly reduced. 

The effect of stenotic radius is negligibly small on 

Rp. It is noticed that plug flow region increases with 

pressure gradient. 

         Plug flow velocity for different values of yield 

stress is presented in Fig.4a. It is noticed that the plug 

flow velocity decreases with δ  and it approaches 

zero when δ = 0.42 in the absence of body 

acceleration and in the presence of body acceleration 

when δ = 0.45. This indicates that for this set of 
values the whole flow region is almost plugged. The 

plug velocity (Fig.4b) is symmetrical about the time t 

=180°. In the absence of body acceleration plug 
velocity is less when t ≤ 45° and during the interval 
90° < t < 120° it is more than the corresponding case 
when body acceleration is present.  For higher values 

of yield stress, plug velocity reduces. 

         Fig.5 shows shear stress variation. The 

behaviour of shear stress is symmetrical about t = 

180°. In a rigid tube the wall shear stress is 
maximum initially and decreases sharply attaining a 

minimum value at t = 60° and increases steadily in 
the interval    60° ≤ t ≤ 180°. It is noticed that the 
effect of yield stress is small and enhances shear 

stress. In the absence of body acceleration, wall shear 

stress is less compared to the case when body 

acceleration is present and it steadily decreases with 

time with point of minimum at t =180°. 
The variation of  flow rate with pressure 

gradient is presented in Fig. 6a. For θ  = 0,  the 
curves are linear. For positive values of θ , the curves 
are slightly non-linear. Flow rate in a normal tube is 

more than that in the stenosed tube. It is noticed that 

body acceleration enhances flow rate. Fig.6b 

represents variation of flow rate with yield stress. 

When θ  increases there is a substantial decrease in 
flow rate which is due to increase in the width of the 

plug region. An increase in δ results in the reduction 

of flow rate which is due to the reduced lumen size. 

The resistance to flow is calculated by using 

the formula   
Q

p∆
=λ .  Fig 7 represents the 
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variation of  frictional resistance with δ for different 

values of yield stress and body acceleration and a 

unit pressure gradient. It is noticed that the flow 

resistance is small when θ = 0 i.e. when the fluid is 
Newtonian i.e.in large vessels. In small blood vessels 

where the non-Newtonian nature of blood is 

significant, the yield stress of blood creates more 

resistance to flow. It is also noticed that the flow 

resistance increases with the size of stenotic 

protuberance. Hence, the combined effect of stenosis 

and yield stress is to enhance the flow resistance and 

thus obstructing the fluid movement. It is interesting 

to note that the body acceleration reduces the flow 

resistance. 

 

5 Conclusions 

 

   By using perturbation analysis assuming that the 

Womersley frequency parameter is small, the 

pulsatile flow of blood with periodic body 

acceleration under the presence of stenosis is studied 

by modeling blood as a Casson fluid. It is observed 

that the body acceleration parameter, radius of 

stenosis and yield stress of the fluid are the strong 

parameters influencing the flow qualitatively and 

quantitatively. It is observed that, in the presence of 

yield stress (θ = 0.1) the magnitude of velocity is 
decreased 3 times of the value corresponding to the 

Newtonian case. It is seen that the body acceleration 

(when B = 2) doubled the magnitude of velocity 

when compared to its magnitude in the absence of 

the body acceleration. The presence and increase of 

the protuberance is found to reduce the magnitude of 

the velocity. The effect of yield stress and stenosis is 

to reduce the flow rate and the presence of body 

acceleration is to increase the flow rate. The flow 

resistance is seen to be increased substantially due to 

the presence of stenosis and yield stress. The body 

acceleration is found to reduce the flow resistance. 
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