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Abstract: - This paper presents the design and the analysis of a multivariable adaptive nonlinear control 
strategy for a class of depollution fermentation processes that are carried out in recycle bioreactors. The 
controller design is based on the input-output linearization technique. The resulted control method is applied in 
depollution control problem in the case of the activated sludge process for which dynamical kinetics are 
strongly nonlinear and not exactly known. More precisely, the problem of adaptive controlling of two reactant 
concentrations with two control inputs is considered and is illustrated by the mentioned process. Simulation 
results are included to evaluate the performances of the designed controller. 
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1   Introduction 
During the last years, the control of biotechnological 
processes has been an important problem attracting 
wide attention. The main engineering motivation in 
applying control methods to such living processes is 
to improve operational stability and production 
efficiency. But the use of modern control for these 
bioprocesses is still low. Two known factors make 
bioprocesses control particularly difficult. First, 
these processes exhibit large nonlinearities, strongly 
coupled variables and often poorly understood 
dynamics. Second, the real-time monitoring and on-
line measurements of biological process variables, 
for example, biomass concentration and/or product 
concentrations, which are essential for control 
design, is hampered by the lack of cheap and 
reliable on-line sensors. The non-linearity of the 
bioprocesses and the uncertainty of kinetics impose 
the adaptive control strategy as a suitable approach 
[1], [6], [9]. So, the difficulties encountered in the 
measurement of the state variables of the 
bioprocesses impose the use of the so-called 
“software sensors” [1]. Note that these software 
sensors are used not only for the estimation of the 
concentrations but also for the estimation of the 
kinetic parameters. The interest for the development 
of software sensors for bioreactor is proved by the 
big number of the publications and applications in 
this area [4], [6], [9].  

This paper presents the design and the analysis of 
a multivariable adaptive nonlinear control strategy 
capable of dealing with the model uncertainties in an 

adaptive way for a class of depollution fermentation 
processes that are carried out in recycle bioreactors. 
The controller is obtained via the input-output 
linearization technique [5]. The resulted control 
method is applied in depollution control problem in 
the case of a complex bioprocess, namely, the 
activated sludge process for which dynamical 
kinetics are strongly nonlinear and not exactly 
known. Although for this depollution bioprocess 
were reported some nonlinear and adaptive control 
algorithms [3], [7], in this paper, a new multi-
variable adaptive control algorithms is proposed and 
analyzed. More exactly, the problem of adaptive 
controlling of two reactant concentrations with two 
control inputs is considered and is illustrated by the 
mentioned process. The algorithm is based on the 
nonlinear structure of the model. The only 
information required about the process is the 
measurements of the state variables and its relative 
degree. It must be noted that if for the analyzed 
process some state variables are not accessible, these 
will be estimated by using an appropriate state 
observer.                

The paper is organized as follows. In Section 2 it 
is presented the dynamical model of the activated 
sludge process. In Section 3 firstly, it is suggested 
how to design a multivariable adaptive linearizing 
control scheme for a class of nonlinear squared 
systems. After that a new multivariable adaptive 
control strategy for mentioned process is presented. 
Simulations results presented in Section 4 illustrate 
the performances of the proposed control algorithm. 
Finally, Section 5 concludes the paper. 
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2 Dynamical Model of Activated 
     Sludge Process 
The activated sludge process is an aerobic process of 
biological wastewater treatment [1], [3]. It is usually 
operated in at least two interconnected tanks, Fig. 1: 
an aerator in which the biological degradation of the 
pollutants takes place and a sedimentation tank 
(settler) in which the liquid is clarified, that is the 
biomass is separated from the treated wastewater. 
Part of the settled biomass is fed back to the 
bioreactor, while the surplus biomass is removed 
from the process. The reaction in the aerator may be 
described by a simple autocatalytic aerobic 
microbial growth that can be represented by the 
following scheme: 
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where S, X and C are respectively the pollutants, the 
biomass and the dissolved oxygen,  is the reaction 
rate and  and  are the yield coefficients. It is 
worth noting that this reaction scheme is a simply 
qualitative relation and does not include stoichio-
metric considerations. 

ϕ
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It is often assumed that the settler work perfectly, 
i.e. there is no biomass in the overflow of the settler. 
Then, the dynamics of the plant (aerator + settler) is 
described by the following mass balance equations: 

in
inrin S

V
FS

V
FFXk

dt
dS

+
+

−μ−= 1                (2) 

in
rin QC

V
FF

Xk
dt
dC

+
+

−μ−= 2                        (3) 

r
rrin X

V
F

X
V

FF
X

dt
dX

+
+

−μ=                        (4) 

r
s

wr

s

rinr X
V

FF
X

V
FF

dt
dX +

−
+

=                (5) 

where  (g/l) is the concentration of influent 
substrate,  (g/lh) is the oxygen feed rate, (g/l) 
is the concentration of the recycled biomass,  
and  (l/h) are the influent, recycle and waste flow  
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Fig. 1. Schematic view of an activated sludge process 

rates, respectively, V and s  (l) are the aerator and 
settler volumes, and 

V
)(⋅μ  (h-1) is the specific growth 

rate of reaction ϕ . If we define by ξ  
the state vector of the process (2)-(5), 

T
rXXCS ][=

X)(⋅μ=ϕ  the 
reaction rate,  the feed rate 
vector,  the gaseous outflow rate 
vector and  the yield coefficient 
matrix, then the dynamical model (2)-(5) can be 
compactly written as: 

T
ininin QSD[F ]00=

TQ ]0000[=
TkkK ]01[ 21 −−=

               (6) QFDK −+ξ−ξϕ=ξ )(&

This model describes in fact the dynamics of a large 
class of bioprocesses carried out in stirred tank 
bioreactors and is referred as general dynamical 
state-space model of this class of bioprocesses [1]. 
In (6),  stand for the dilution rate matrix and is 
given by  
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whose entries are defined as: 

VFD inin /= ,   VFD rr /= ,  , rin DDD +=1

srin VFFD /)(2 += ,              (8) swr VFFD /)(3 +=

The oxygen feed rate inQ  is usually set equal to the 
liquid-gas oxygen transfer rate [2]: 

)( CCakQ sLin −⋅=                          (9) 

where L  is the oxygen mass transfer coefficient 
and s  the saturation constant. In the following, we 
shall consider that  is a linear function of the air 
flow rate W [3]: 

ak
C

akL

0, 00 >= aWaakL                         (10) 

The most difficult task for the construction of the 
dynamical model (6) is the modelling of the reaction 
kinetic ϕ . The form of kinetics is complicated, 
nonlinear and in many cases partial or completely 
unknown. A realistic assumption is that a reaction 
can take place only if all reactants are presented in 
the bioreactor [1], [7]. Therefore, the reaction rates 
are necessarily zero whenever the concentration of 
one of reactants is zero. 
 
 
3   Control Strategies 
3.1  Problem statement 
For the class of bioprocesses described by general 
dynamical model (6) we consider the problem of 
controlling  outputs, 2≥p )dim(ξ=< np , which 
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are linear combinations of the process components 
 by using ξ p  control inputs under the following 

assumptions: (i) the p  control inputs are either feed 
rates or dilution rates; (ii) the reaction rates  kϕ   are 
time-varying and unknown; (iii) the matrix K is 
known; (iv) the vectors F and Q and the matrix D 
are known either by measurement or by user's 
choice; (v) the process is minimum phase and the 
relative degree of all the p  equations are equal to 
one.  

Let be  the output vector defined as: py ℜ∈

ξ= Cy                          (11) 
where C is a - matrix of known constants. By 
using (6) or an appropriately reduced order model 
formulation, the dynamic of output y can be written 
as follows: 

)( np ×

uBAugKfy T )()()()(),,( ξ+θξΦ+ξ=ξ+ξϕ=&  
                (12) 
where  is the control input vector, 

 is a state dependent vector and 
 is a quadratic state dependent matrix. θ 

is the parameter vector (

pu ℜ∈
pA ℜ∈ξ)(

ppB ×ℜ∈ξ)(
q=θ)dim( ) which contains 

the unknown kinetics and/or yield coefficients and 
 is the regressor matrix ( ), 

whose entries are assumed to be known. Note that if 
all the 

)(ξΦT qpT ×=Φ )dim(

p  equations in (12) have relative degree 
equal to one (as it has been assumed in (v)), then the 
matrix  is nonsingular.  )(ξB

For the process (12), the control objective is to 
make outputs  track specified trajectories denoted 

. However, the problem is very difficult or 
even impossible to be solved if the vector 

y
py ℜ∈*

θ  is 
assumed to be completely unknown. 
 
 
3.1.1 Exactly feedback linearizing control 
Firstly, we consider the ideal case where maximum 
prior knowledge concerning the process is available, 
that is the vectors  and θ  in (12) are assumed 
completely known and all the state variables are 
available for on-line measurements. Assume now 
that for the closed loop system (process + controller) 
we wish to have the following first order linear 
stable dynamical behavior: 

)(ξA

0)()( ** =−⋅Λ+− yyyy
dt
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with . Then, from 
(12) and (13) we obtain the following multivariable 
decoupling feedback linearizing control law: 

pidiag ii ,...,1,0},{ =>λλ=Λ
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0

    (14) 

The control law (14) leads to a linear error model as  
, where  represents the 

tracking error. It is clear that if , the 
error model has an exponential stable point at 

tt ee Λ−=& yyet −= *

pii ,...,1,0 =>λ

=t . Since the order of this error system is e np < , 
then pn −  other system states are associated with 
the zero dynamics [5], [10]. These correspond to 
unobservable modes. It has been shown [11] that if 
the zero dynamics are asymptotically stable, then the 
system (6) will be feedback stabilizable by an input-
output linearizing law of the form (14). A nonlinear 
system with (un)stable zero dynamics is said to be 
(non)minimum phase. Usually, we can obtain 
conditions on the stability of the zero dynamics from 
the zeros of the linear tangent model transfer 
function derived at some equilibrium points [3]. 
 
 
3.1.2  Adaptive control  
If the parameter vector θ  in (12) is assumed to be 
unknown, in the linearizing control law (14) it will 
be replaced by its corresponding on-line estimate, 
yielding the following adaptive control law: 

[ ]**1 ˆ)()()()( yAyyBu T &+θξΦ−ξ−−Λξ= −            (15) 

Since in (12) the unknown parameter appears 
linearly, the on-line estimate of  can be performed 
by using appropriately techniques. It must be noted 
also that if in (14) appear state variables that are not 
accessible, these will be replaced either by some 
auxiliary variables or by their estimates performed 
by using an appropriately state observer. 

θ

 
 
3.2  Adaptive control strategies of activated 
       sludge process 
For the activated sludge process, the main control 
objective is to maintain the wastewater degradation 
at a desired level despite load variations and 
substrate concentration variations. But in any 
aerobic fermentation process, a proper aeration is 
crucial to process efficiency; at a result an adequate 
control of dissolved oxygen concentration in aerator 
is very important. Then the controlled variables are 
concentrations of pollutant S and dissolved oxygen 
C inside the aerator, that is . Regarding 
the input control variables it could be analyzed two 
cases. 

TCSy ][=

(i). The case when the manipulated variables are 
the influent flow in  and the air flow rate W , that is 

, while the recycle flow rate  is 
maintained constant.  

F
T

in WFu ][= rF

(ii). The case when both the flow rate and 
concentration of influent substrate are variable, the 
manipulated variables being now the recycle flow 
rate  and the air flow rate W , that is 

.  
rF

T
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Consequently, in both cases, we have a 
multivariable control problem with two inputs and 
two outputs. Since the first case is not realistic, in 
the following we will analyse only the second case 
when the input and output vectors are  
and , respectively.  

T
r WFu ][=

TCSy ][=
From the model (2)-(5) it can be seen that the 

relative degrees of both controlled variables  and 
C, respectively, are equal to one. Then, the 
expressions of , ) ,  and  in (12) 
are readily obtained from model (2)-(5) and (7) as: 
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The matrix  is nonsingular and so invertible 
as long as S and  are different from zero. 
Note that these conditions are satisfied in a normal 
operation of the bioreactor. 
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For this process we consider that the specific 
growth rate μ  is a Monod-type model, i.e. [7]: 
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In the ideal case when the process is completely 
known, it can be shown, after long but rather 
straightforward calculations applied to linear 
approximations of the model (2)-(5) that, the process 
(2)-(5) is minimum phase. Under these conditions, 
the exactly linearizing controller (14) with 

 is particularized as follows: TCSy ][ *** =

[ ]*
2

*1 )()()()( yAyyBu T &+θξΦ−ξ−−Λξ= − , i.e. 

⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
−
−

⎥
⎦

⎤
⎢
⎣

⎡
λ

λ
⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

CC
SS

CCaVC
VS

W
F

s

r
*

*

2

1
1

0 0
0

)(/
0/

 

                               (18) ⎟⎟
⎠

⎞
⎥
⎦

⎤
⎢
⎣

⎡
μ
μ

+⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

Xk
Xk

CD
SSD

in

inin

2

1)(

Now we shall develop an adaptive control 
algorithm under the following realistic conditions: 
the specific growth rate )(⋅μ  is time-varying and 
unknown, the concentrations of biomasses X and 

r  are not accessible, and the only measurements 
available on-line are: the output pollution level, the 
dissolved oxygen concentration and the influent 
substrate concentration in . Under these conditions 
an adaptive controller is obtained as follows.  

X

S

The unmeasured variables X and  can be 
estimated by using an asymptotic state observer [2]. 
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Then, from (19) and (20) the estimates of X  and 
  are given by: rX

22 /)ˆ(ˆ kCzX −= ,                          (21) 3ˆˆ zX r =

The unknown specific growth rate μ  in (17) can 
be rewritten as follows: 

SCCS ⋅θ=μ ),(                        (22) 

where θ  is an unknown function depending of the 
process components which will be on-line estimated 
by using an appropriately parameter estimator. Note 
that, for our example: 

CKSK CS +
⋅

+
μ=θ

11
max               (23) 

which are positive functions of  and C. S
Using (20), (21) and (22), the adaptive version of 

the controller (18) is given by: 
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In (24) the variables  and  are calculated via 
equations (20) and θ  is updated by using an 
observer-based parameter estimator [6] that here is 
particularized as follows: 

1ẑ 2ẑ
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                         (27) 
where 121 ,, γωω  and 2γ  are positive design 
parameters to control the stability and convergence 
of the estimator (see [6], for stability and 
convergence properties). 
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Fig. 2. Bloc diagram of the designed adaptive system 
 

A bloc diagram of the designed multivariable 
adaptive system, is shown in Fig. 2. 
 
4   Simulation Results 
The performances of the designed multivariable 
adaptive controller have been tested by performing 
extensive simulation experiments. The numerical 
values of the kinetic parameters are [7]:  0.2 
h

=μ0
max

-1,  75 mg/l,  2 mg/l, and the model 
parameters are:  1.2, k  0.565, 

=SK =CK
=1k =2 =0a  0.017 

m-3,  10 mg/l, V = 380 m=sC 3,  256 m=sV 3. The 
gains and the tuning parameters of the two adaptive 
controllers have been set to the following values: 

 25, 7.5, =λ1 =λ 2 =ω=ω 21 -50, =γ=γ 21  2.0e-6. 
The auxiliary variables  and the estimated 
parameter  have been initialized as follows: 

321 ,, zzz
θ =1ẑ  

9.6 g/l,   4.5 g/l,   90 g/l,  7.5e-4.  =2ẑ =3ẑ =θ̂
The behavior of closed-loop system using 

multivariable adaptive controller (24) by comparison 
to the exactly linearizing control law (17) is 
presented in Figs. 4a-4d. The system’s behavior was 
analyzed assuming that the pollutant concentration 

 acts as a perturbation of the form presented in 
Fig. 3, and the kinetic coefficient  is time-
varying as μ .  

inS
maxμ

))11/sin(05.01()( 0
maxmax tt π−μ=

 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Variation of perturbation  inS

 
 
 
       
    
 

     
 
           

 
Fig. 4a. Controlled output S 
 

             
 
 

   
 
 
 
 
 
 
Fig. 4b. Controlled output C 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4c. Control input Fr 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4d. Control input W 
 
 
 
 

    
      

 
 
 
 
 
 

Fig. 4e. Actual and estimated parameter θ  ˆ
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Much more, the influent flow rate  (minF 3/h) is also 
time varying as: 

))10/cos(025.0)80/sin(025.01(40)( tttFin π+π−=  

The graphics in Fig. 3e shows the evolution of 
actual time-varying specific growth rate  and its 
estimate .  

θ
θ̂

From graphics in Figs. 4a-4d it can be seen that 
the behavior of adaptive system is good, being very 
close to the behavior of closed loop system in the 
ideal case when the process model in completely 
known. Note also the regulation properties and the 
ability of the adaptive controller (24) to maintain the 
pollutant (controlled output) S at a very low level 
(  5 mg/l) despite the very high load variations, 
both for  and , and the time variation of the 
process parameters. 

=*S

inS inF

One can observe also a good behavior both of the 
proposed state observer (20), (21) and parameter 
estimator (25)-(27).   
 
 
5   Conclusions 
A multivariable adaptive nonlinear control strategy 
have been designed and analyzed for a class of 
depollution fermentation processes that are carried 
out in recycle bioreactors. The approach has been 
illustrated on the activated sludge process. Since, in 
most situations, the kinetic parameters are uncertain 
and time varying and the process non-linearities are 
not exactly known and, much more, not all the state 
variables are on-line measurable, it can be 
concluded that adaptive controllers are the only 
viable alternative. The simulation results of 
applications of the designed multivariable adaptive 
controller confirm the efficiency of the control 
scheme.  
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