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Abstract: - This paper deals with the problem of on-line state estimation and identification for a fed-batch 
bioprocess, which is in fact a lipase production process that takes place inside a Fed-batch Bioreactor. The 
lipase production process is highly nonlinear and, furthermore, the available on-line measurements are lack 
and the reaction kinetics is not perfectly known. Some on-line state estimation strategies based on extended 
Luenberger observer and asymptotic observer approach are proposed. The unknown kinetic parameters of the 
bioprocess are estimated by using a distribution based identification technique. The performance of the 
proposed estimation strategies is analysed using numerical simulation. 
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1   Introduction 
The development and especially the implementation 
of advanced control strategies on real bioprocesses 
are difficult because of absence of reliable 
instrumentation for the biological state variables, i.e. 
the substrates, biomass, and product concentrations. 
In many cases the state variables (the 
concentrations), were analysed manually and as a 
result there is not on-line (and real-time) control. 
This fact together with the nonlinearity and 
parameter uncertainty of the bioprocesses requires 
an enhanced modelling effort and modern state 
estimation and identification strategies [1]. 
     Several estimation strategies have been 
developed to provide accurate on-line estimations of 
state variables. Presently, two classes of state 
observers for bioprocesses can be found in the 
literature [1], [4]. The first class of observers 
(including classical observers like Luenberger and 
Kalman observers, nonlinear observers) is based on 
a perfect knowledge of the model structure. A 
disadvantage of this class is that the uncertainty in 
the model parameters can generate possibly large 
bias in estimation of unmeasured states. A second 
class, called asymptotic observers, is based on the 
idea that the uncertainty in process models lies in 
process kinetics models. The design of these 
observers is based on mass and energy balances 
without the knowledge of kinetics being necessary. 
     From the identification point of view, very 
important is the estimation of parameters and 
especially of kinetic rates inside a bioreactor (the so-

called kinetics of the bioprocess) - the estimates of 
these rates are used for advanced control strategies. 
This problem can be solved using “software 
sensors”. A software sensor is a combination 
between a hardware sensor and a software estimator 
[1], [2], [4]. A well-known technique is the Bastin 
and Dochain approach based on the adaptive 
systems theory [1], [2]. This strategy consists in the 
estimation of unmeasured state with asymptotic 
observers, and after that, the measurements and the 
estimates of the state variables are used for on-line 
estimation of kinetic rates. This method is useful, 
but in some cases, when many reactions are 
involved, the implementation requires the 
calibration of too many parameters. A relative 
modern approach [6], [8] is the distribution based 
identification method. In this approach the set of 
nonlinear differential equations describing the state 
evolution is mapped into a set of linear algebraic 
equations respect to the model parameters. 
     Generally speaking, the design of stable and 
convergent state estimators and the design of 
appropriate identification method for bioprocesses is 
a complex task and good solutions are given only by 
studying each particular bioprocess. 
    A bioreactor is a tank in which several biological 
reactions occur simultaneously in a liquid medium 
[1]. The bioreactors can operate in three modes: the 
continuous mode, the fed-batch mode and the batch 
mode [1], [2]. For example, a Fed-Batch Bioreactor 
(FBB) initially contains a small amount of substrates 
and micro-organisms and is progressively filled with 
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the influent substrates. When the FBB is full the 
content is harvested. By contrast, in a continuous 
bioreactor the substrates are fed to the bioreactor 
continuously and an effluent stream is continuously 
withdrawn such that the culture volume is constant.  
     This paper deals with the design of some on-line 
state estimation and identification strategies for a 
lipase production bioprocess that is carried out 
inside a FBB. The organization of the paper is as 
follows. In Section 2 the lipase production process is 
widely analysed, and a nonlinear model of the 
bioprocess is presented. Section 3 deals with the 
design of two estimation algorithms for state 
variables: an extended Luenberger estimator and an 
asymptotic observer. In Section 4, a distribution 
based identification method for the unknown 
kinetics of the bioprocess is investigated. The 
performance of all estimation strategies are 
illustrated by using numerical simulations. Finally, 
concluding remarks are collected in Section 5. 
 
 

2 The dynamical model of the lipase 
production process 

The lipase is an enzyme able to split fats and to 
synthesise glycerides, so the large scale production 
of lipase is very useful in many applications. The 
lipase production process usually takes place inside 
FBB; this process is widely discussed in [3] and a 
nonlinear model is designed:  
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     In these equations, 1S (g/l), 2S (g/g), X (g/l), 

inL (u/mg) and exL (u/ml) are the concentrations of 
external (extra-cellular) substrate, internal (intra-
cellular) substrate, biomass, internal (intra-cellular) 
and external (extra-cellular) lipase, respectively and 
Cer is the carbon dioxide excretion rate (a, b are 
excretion parameters) [3], [7]. In (1), F is the 
feeding rate of substrate, i.e. the input process 
variable (when 0=F , the operating mode is batch) 
and Y is the biomass/substrate yield coefficient. The 
rate η  is the absorption rate of the external substrate 

1S , µ  is the specific growth rate of biomass X, pν  
is the production rate of the internal lipase inL  and 

exν  is the excretion rate of external lipase exL . The 

form of these rates is of Monod type for exνµη ,, , 
but very complex for pν : Haldane law plus 
influence of the specific growth rate of biomass. 
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     All coefficients in (2), (3) and (4) are strictly 
positive. expMM KKKK ,,, 21  are Michaelis - Menten 
constants, **** ,,, exp ννµη  are maximum specific 
rates and iK  is an inhibition constant. The above 
model is valid for biomass and substrate 
concentrations between 0 g/l and 8 g/l [3]. The 
strongly nonlinear character of this model is given 
by the reaction kinetics. In many situations, the yield 
coefficients, the structure and the parameters of the 
reaction rates are partially known or unknown. 
     The main purpose of FBB control is to maximise 
the final lipase product quantity. This goal can be 
achieved through an optimal control of the 
bioreactor, i.e. the calculation of the optimal profile 
for the feeding rate, which is a common solution for 
FBB control [1]. This optimal control is 
unsatisfactory when the kinetics is imprecisely 
known or unknown (the nonlinear expressions of the 
kinetic parameters (2)-(4) are not totally realistic; in 
fact, these kinetic parameters are imprecisely 
known). Two possible suboptimal alternatives are 
the adaptive control and the SMC [7]. The analysis 
of this bioprocess [3] leads to the following main 
result: the regulation of the concentration of the 
external substrate 1S  can achieve the maximisation 
of the production. The dynamics of concentrations 
of external substrate, internal substrate and of the 
biomass (first three equations of (1)) are significant 
for the evolution of the internal and external lipase 
concentrations (given by the equations four and fifth 
of (1)) [3], [7]. Therefore, the equations describing 
the dynamics of 21, SS  and X are used for the 
control design. Then we consider the first three 
equations, compactly written as: 
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where [ ] [ ]TT XSS 21321 == ξξξξ  is the state 
vector and u = F (feeding rate is the control input). 
     In order to implement useful control strategies, it 
is necessary to design state observers and 
identification methods for the unknown kinetics.  
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3 On-line state estimation strategies 
 
3.1 An extended Luenberger observer 
In the lipase production process, often the only state 
variable that is on-line available is the biomass 
concentration, and it is necessary to reconstitute the 
external and especially the internal substrate 
concentrations. Next, for the on-line estimation of 
unmeasured state variables 1S  and 2S  an extended 
Luenberger observer will be designed. Firstly, we 
deduce that the model equations (5) constitute an 
exponential observable system (for more details, see 
[1], [4]). The equations (5) can be written: 

( ) ( )ξξ ft =&  (6) 
where ( ) ( )[ ]TXSYFXf ⋅+⋅−+⋅−= µµηηξ 2 . 
     A general class of observers for bioprocesses is 
proposed by Bastin and Dochain [1]: 

( ) )ˆ()ˆ(ˆˆ
11 ζζξξξ

−Ω+= f
td

d  (7) 

where ξ̂  is the estimated state vector, )ˆ(ξΩ  is a 
gain matrix and 1ζ  is the vector of measurable state 
variables, ξζ L=1 , with L a selection matrix. 
     The design of the observer consists in the choice 
of gain matrix. The dynamic of the estimation error 

ξξ ˆ−=
∆

e  is: 

eLfefe )ˆ()ˆ()ˆ( ξξξ Ω−−+=&  (8) 

     It is clear that e = 0 is an equilibrium point of (8). 
The linear approximation around e = 0 can be easily 
obtained: 
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     If it is possible to impose desired values for the 

eigenvalues of matrix [ ]LA )ˆ()ˆ( ξξ Ω− by choosing 
the gain matrix, then the system (6) is exponentially 
observable and the observer (7) is an exponential 
observer. A necessary condition of exponential 
observability is that the observability matrix 

O [ ]12 )()()( −= nLALALAL ξξξ L  (10) 

is a full rank matrix: rank(O) = n  along the state 
trajectories, with n the dimension of state vector. 
     In the case of our lipase bioprocess, 31 ξζ == X , 

[ ]TL 100= . After straightforward calculations 

the matrix ( )[ ]
3,1,

ˆ
=

=
jiijaA ξ  is obtained: 
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Then the observability matrix is: 
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and ( ) ( ) 0)det( 21
2
32 ≠−= ξξ aaO  ( 03 >ξ ). Therefore 

rank(O) = 3 and the necessary condition of 
exponential observability is achieved. 
     With this condition fulfilled it is possible to try 
the design of an extended observer for the system 
(6). The design of the observer consists in the choice 
of gain matrix )ˆ(ξΩ  such that the equilibrium point 
e = 0 of (9) is asymptotically stable. Therefore, the 
gain matrix must to obey two conditions: (i) the 

matrix [ ]LA )ˆ()ˆ( ξξ Ω− and his derivative are 
bounded; (ii) the real parts of eigenvalues of  

[ ]LA )ˆ()ˆ( ξξ Ω−  are strictly negative. The 

characteristic polynomial of [ ]LA )ˆ()ˆ( ξξ Ω−  is: 

[ ] 32
2

1
3)ˆ()ˆ(det αλαλαλξξλ +++=





 Ω−− LAI  

     Using the notation ( ) ( ) ( ) ( )[ ]Tξωξωξωξ ˆˆˆˆ
321=Ω  

(in this case the gain matrix is in fact a vector), and 
the connection between the coefficients 3,2,1, =iiα  
and the eigenvalues 3,2,1, =iiλ , we can obtain the 
components of  )ˆ(ξΩ  after some direct calculations: 
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with ( )ξ̂ijij aa = . 
     Finally, the state estimator for the unmeasured 
state variables 21,ξξ  consists in the system (7) 
where the gain matrix is given by (12) with the 
design parameters 3,2,1, =ℜ∈ − iiλ . 
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3.2 The design of an asymptotic observer 
The extended Luenberger observer is based on a 
perfect knowledge of the model structure, which is 
not a true assumption. Therefore, the main drawback 
of this observer is that the uncertainty in the model 
parameters can generate possibly large bias in the 
estimation of the unmeasured states. In order to 
overcome this disadvantage, it is possible to design 
an asymptotic observer, without the knowledge of 
the process kinetics being necessary. 
     The design of an asymptotic observer is based on 
some useful changes of coordinates, which lead to a 
submodel of (5) independent of the kinetics [4]. 
     For instance, we will suppose that the internal 
substrate concentration is not measurable and it will 
be estimated. If we define an auxiliary variable as 

32 )( ξξ Yz += , with the dynamics 

31 )( ξξη=
dt
dz ,  (13) 

then the estimate of the internal substrate 
concentration is 

Yz
−=

3
2

ˆ
ξ

ξ  (14) 

    From these relations it can be easily seen that the 
dynamics of auxiliary state variable is independent 
of the kinetics. The estimations of 2ξ  obtained can 
be used in the design of control laws. 
     The asymptotic observer (13), (14) has good 
convergence and stability performance [1], [4]. The 
design is quite simple and natural; the observer is 
independent of the kinetics, the only drawback being 
a possible low rate of estimation convergence, 
which depends on the operating conditions. 
 
3.3 Simulation results 
For the lipase production process were performed 
some simulation experiments, where for the 
bioprocess parameters from equations (1)-(4) were 
considered the following values [3]: 
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     The bioprocess evolution was examined in open 
loop. This simulation is considered in order to 
analyse the lipase production and the performance of 
the state observers when the control law is missing.      
The following simulation cases are considered: 
     1) The extended Luenberger estimation algorithm 
was implemented for the design parameters ,11 −=λ  

,82 −=λ  01.03 −=λ . The "measured" variable 

X=3ξ  is vitiated with 3% additive white noise. 
The estimated state variables 2211

ˆˆ,ˆˆ SS == ξξ  are 
compared with the simulated state values provided 
by the model equations (1)-(4). Fig. 1 presents the 
time evolution of the external substrate 
concentration and its estimate. In Fig. 2 the internal 
substrate concentration and its estimate are depicted. 
The “vitiated” measurements of the biomass 
concentration are presented in Fig. 3. Finally, Fig. 4 
depicts the extracellular lipase concentration; from 
this figure it can be seen that after the consumption 
of external substrate, the growth of external lipase is 
limited. The simulation shows that the estimation 
algorithm is good. The measurement noise induces 
some noisy estimates of internal substrate 
concentration, but the effect on the estimates of 
external substrate concentration is small. 
     2) The asymptotic observer (13), (14) was 
implemented in order to reconstitute the internal 
substrate concentration from the measurements of 
biomass concentration. The bioprocess parameters 
were the same as in simulation case 1). Fig. 5 
depicts the simulation results – the internal substrate 
concentration versus its estimate. It can be observed 
that the convergence of the asymptotic observer 
seems to be better than the convergence of the 
extended Luenberger estimator. The same problem 
regarding the noise sensitivity affects the estimates. 
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Fig. 1. Evolution of 1S  and its estimate 

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time (h) 

S 2 

S 2 

(g/l) 

 
Fig. 2. Time profile of 2S  and its estimate 
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Fig. 3. Profile of biomass concentration (noisy data) 
 

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

4

Time (h) 

(u/ml) 

L ex 

 
Fig. 4. Evolution of external lipase concentration 
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Fig. 5. Evolution of 2S  and its estimate – case 2 
 
 

4 Identification results using a 
     distribution based method 
When the parameters and the kinetics of the 
bioprocess are partially known or unknown, it is 
necessary to use identification procedures. One 
method to identify nonlinear model parameters is the 
distribution based method. In this approach the set 
of nonlinear differential equations describing the 
state evolution is mapped into a set of linear 
algebraic equations respect to the model parameters. 
Using techniques utilized in distribution approach, 
the measurable functions and their derivatives are 

represented by functionals on a fundamental space 
of testing functions [5], [6], [8]. 
     If Φn is the fundamental space from the 
distribution theory, of the real functions 

)(,: tt ϕϕ →ℜ→ℜ .  Let  )(,: tqtq →ℜ→ℜ  be 
a function which admits a Riemann integral on any 
compact interval T from ℜ . Using this function, a 
unique distribution  

ℜ∈→ℜ→Φ )(,: ϕϕ qnq FF   (15) 

can be building by the relation: 

∫ Φ∈∀=
R

nq dtttqF ϕϕϕ ,)()()(  (16) 

     In distribution theory, the notion of k-order 
derivative is introduced. If nqF Φ∈ , then its k-order 

derivative is a new distribution n
k

qF Φ∈)( uniquely 
defined by the relations:  

n
k

q
kk

q FF Φ∈∀−= ϕϕϕ ),()1()( )()(  (17) 

RdtttqF
R

kkk
q ∈−=→ ∫ )()()1()( )()( ϕϕϕ  (18) 

where k

k
kk

dt
tdttRR )()(,: )()( ϕϕϕ =→→  is the k-

order time derivative of the testing function.  
     When )(ℜ∈ kCq , then 

,)()()1()()()( )()()( ∫∫ −==
R

kk

R

kk
q dtttqdtttqF ϕϕϕ (19) 

that means the k-order derivative of a distribution 
generated by a function )(ℜ∈ kCq  equals to the 
distribution generated by the k-order time derivative 
of the function q. 
     The state equations used for parameters 
estimation are (5) and (2). Therefore the system 
contains rational dependencies between parameters 
and measured variables. To obtain linear equations 
in unknown parameters, the identification problem is 
split in several simpler interlinked identification 
problems called identification layers. For simplicity, 
shall we denote the plant parameters by the vector: 

T],,,,[ 54321 θθθθθθ =  (20) 
YKK MM ===== 524

*
312

*
1 ,,,, θθµθθηθ   (21) 

     Based on the specific structure of this system, it 
is possible to group the state equations, in such way 
to determine two interconnected identification 
problems. First, some state equations are utilized to 
obtain a set of linear equations in some parameters. 
The results of this first stage of identification are 
utilized for expressing other parameters by linear 
equations in the second stage. 
     Step 1: From the first state equation of (5), using 
(21) one obtains the following differential equation: 

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007     89









−+−=

dt
tdtt

dt
td )())()(()(

2
1 1

23112

2
1 ξθξξθξ  (22) 

that is a linear in parameters 1θ  and 2θ . 
     Multiplying both sides of relation (22) with two 
sinusoidal type test functions 2,1),( =itiϕ  and 
integrating over ℜ  on get a system of linear 
equations in respect with parameters  1θ  and 2θ : 
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1 ϕξ . Solving the system (23) one 

obtain the parameters 1θ  and 2θ . Using these 
estimates of the parameters we can now estimate the 
rate )(ˆ tη  that we use in the second step. 
     Step 2: From the second state equation of (5), 
using (21) one gets the next differential equation: 
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     If one denote 53θθθ =′  one obtain a linear 
equation in parameters 3θ  , 4θ  and θ′ . 
     In the same way to step 1, a third order system of 
linear equations in respect with parameters 3θ  , 4θ  
and θ′  is obtained, and by solving it one get the 
parameters 3θ  , 4θ  and 5θ . Then, the systems of 
equation for all the five unknown parameters are: 
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     Real (see subsection 3.3) and estimated values of 
the parameters are presented in the next table. 
 
Table 1. Real and estimated values of parameters 

 *
1 ηθ =  12 MK=θ *

3 µθ = 24 MK=θ Y=5θ
Real 0.21 0.11 0.25 0.25 1.16 
Estimate 0.2103 0.1172 0.2754 0.2613 1.093 

5   Conclusion 
In this paper, some estimation strategies for a lipase 
production process have been presented. This 
bioprocess takes place inside a FBB, is strongly 
nonlinear and the kinetics is imprecisely known. A 
state estimation strategy based on extended 
Luenberger observer was designed and 
implemented. In order to deal with the parameter 
uncertainty of the bioprocess, an asymptotic 
observer was developed. The simulation results 
show a quite good behaviour of the proposed 
observers. The unknown kinetic parameters of the 
process were estimated with encouraging results by 
using a distribution based identification technique. 
     The proposed estimation techniques can be used 
for the design of nonlinear control strategies. 
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