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Abstract: The symmetric quadratic eigenvalue problem

(λ2M + λC + K)u = 0,

where M, C, and K are given n × n matrices and (λ, u) is an eigenpair, arises in a wide variety of practical
applications, including vibration, acoustic, and noise control analysis[5]. In the most practical application, the
problem is often of a very large dimension. Unfortunately because of the nonlinearity, the problem is extremely
hard to solve numerically, and the state-of-art computational techniques, such as the Jacobi-Davidson method, are
capable of computing only a few extremal eigenvalues and eigenvectors [2,3]. Fortunately, there are engineering
applications that require only some of the eigenvalues lying within an interval. In this paper, a new hybrid method
combining a Parametrized Newton-type method described in [1] with the Jacobi-Davidson method [2] is proposed
to compute an eigenpair of quadratic pencil within an interval. The experimental results show that this method
is much faster than the Jacobi-Davidson method. The results of this paper generalize those of an earlier work on
parameterized Newton’s Algorithm for finding an eigenpair of a symmetric matrix [1].

Key–Words: Quadratic eigenvalue problem, Parametrized Newton’s method, Jacobi-Davidson method, Hybrid
method, Symmetric positive definitive matrix.

1 Introduction

A standard way to solve the quadratic eigenvalue
problem

(λ2M + λC + K)u = 0, (1)

where M, C , and K are given matrices and (λ, u) is
an eigenpair, is to transform the quadratic eigenvalue
problem to a linear generalized eigenvalue problem of
the form Ay = λBy and then apply the well-known
QZ algorithm [4]. Unfortunately, the QZ algorithm is
not effective for large and sparse problems. Moreover
it can not take advantage of the exploitable structures
of the matrices M,C , and K, such as the symmetry,
positive definiteness, sparsity, etc., which are gener-
ally offered by practical problems.

The state-of-the-art technique, such as the Jacobi-
Davidson method [3], is capable of only computing a
few extremal eigenvalues. In [1], a Newton type of
method was proposed for approximating an eigenpair
of a large symmetric matrix. In the present paper, we
first show how to extend Newton type of method in
[1] to iteratively approximate an eigenpair of the sym-

metric quadratic pencil

Q(λ) = λ2M + λC + K (2)

and then propose a new Hybrid method, combining
our quadratic eigenvalue method, with the Jacobi-
Davidson method, to approximate an eigenpair in a
given interval of the real-line. We will assume through
out the paper the symmetric pencil Q(λ) has all its
eigenvalues real. Our results of numerical experi-
ments show that the Hybrid method converges faster
than the Jacobi-Davidson method. In fact, for some
examples, the Jacobi-Davidson did not converge at all.

2 Parametrized Newton’s Method
for the Symmetric QEP:

In this section, we state our Parametrized Newton’s
Method [1] for the symmetric quadratic eigenvalue
Problem.
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We define the function f : Rn+1 → Rn+1

f(λ, u) =

(
Q(λ)u
uT u − 1

)
,

where Q(λ) = λ2M + λC + K,
M, C, and K ∈ Rn×n are symmetric positive
definite matrices and u ∈ Rn and λ ∈ R.

It follows that f(λ, u) = 0 if and only if
Q(λ)u = 0 and uT u = 1, where (λ, u) is an
eigenpair of the QEP(Q(λ)).

Given an initial approximation

(
xi

αi

)
of an

eigenpair

(
u
λ

)
lying in the given interval [a, b]. In

order to use Newton’s Method, we need the Jacobian
matrix Jf of f which can be calculated as

Jf (λ, u) =

(
Q(λ) Q′(λ)u
2uT 0

)
,

where Q′(λ)= 2λM + C is the derivative of the
matrix polynomial Q(λ).
The Parametrized Newton’s method for Q(λ) to

refine the approximation of

(
u
λ

)
iteratively can be

stated as follows:(
xi+1

αi+1

)

=

(
xi

αi

)
−
(

Q(αi) Q′(αi)
2xT

i 0

)−1 (
Q(αi)xi

xT
i xi − 1

)
.

Assuming αi �= 0 then we can write(
Q(αi) Q′(αi)xi

2xT
i 0

)(
xi+1

αi+1

)

. =

(
0 Q′(αi)xi

xT
i

1
αi

)(
xi

αi

)
.

Now choose a parameter t > 0 so that the method
takes the form:(

Q(αi) Q′(αi)xi

2xT
i 0

)(
xi+1

αi+1

)

. =

(
I 0
0 t

)(
0 Q′(αi)xi

xT
i

1
αi

)(
xi

αi

)
.

The above can be written as:

Q(αi)xi+1 + αi+1Q
′(αi)xi = αiQ

′(αi)xi

or

xi+1 = (αi − αi+1)Q−1(αi)Q′(αi)xi (3)

and
2xT

i xi+1 = t(xT
i xi + 1). (4)

From (3) and (4), we obtain

xT
i xi+1 = t

2 (xT
i xi + 1)

= (αi − αi+1)xT
i Q−1(αi)Q′(αi)xi.

Set βi = xT
i Q−1(αi)Q′(αi)xi. Then we have

t

2
(xT

i xi + 1) = βi(αi − αi+1)

or

(αi − αi+1) =
t

2
(xT

i xi + 1)
1
βi

.

Since xi is normalized vector,

αi+1 = αi − t

βi
, (5)

from (3) and (5) we obtain,

xi+1 =
t

βi
Q−1(αi)Q′(αi)xi. (6)

Set β̂i = ||(Q−1(αi)Q′(αi)xi)||

= (xT
i Q′(αi)Q−2(αi)Q′(αi)xi)

1
2

and yi = Q′(αi)xi then, β̂i = (yT
i Q−2(αi)yi)

1
2 .

Now compute

xi+1

||xi+1|| =
t

βi
Q−1(αi)Q′(αi)xi

|| t
βi

Q−1(αi)Q′(αi)xi||

=
|βi|
βi

1
β̂i

Q−1(αi)y.

Since |βi|
βi

= ±1, we ignore the sign and
||xi+1|| = 1, Then we can write

xi+1 =
1
β̂i

Q−1(αi)yi

where yi = Q′(αi)xi and αi+1 = αi − t
βi

.

Set ri = βi

β̂i
. Let t = r2

i s, where s is an arbitary

positive number.
Parametrized Newton’s iteration for Q(λ) now

takes the form:

xi+1 =
1
β̂i

Q−1(αi)yi (7)
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and
αi+1 = αi − ri

β̂i

s, (8)

where yi = Q′(αi)xi, β̂i = ||(Q−1(αi)yi)|| and
ri = βi

β̂i
.

The parameter s needs to be choosen so that the it-
eration defined by (7) and (8) converges to a desired
eigenpair.

For this purpose, we define the the residual at the
(i + 1)th step of Parametrized Newton’s Method by

Resi+1 = Q(αi+1)xi+1. (9)

Using (7), (8) and (9), we can then show that:

||Resi+1||2 = 1

β̂i
2 [yT

i yi − 2 ris

β̂i
yT

i pi

+
r2
i s

2

β̂i
2 (2yT

i zi + pT
i pi) − 2

r3
i s

3

β̂i
3 pT

i zi +
r4
i s

4

β̂i
4 zT

i zi].

(10)
That is,

||Resi+1||2 ≤ 1

β̂i
2 [||yi||2−2 ris

β̂i
yT

i pi+2r2
i s2

β̂i
2 ||yi||||zi||

. + r2
i s2

β̂i
2 ||pi||2 − 2 r3

i s3

β̂i
3 pT

i zi + r4
i s4

β̂i
4 ||zi||2]

where β̂i
2

= ||zi||2, yi = Q′(αi)xi,

zi = Q−1(αi)Q′(αi)xi, pi = Q′(αi)zi,
and

ri =
(Q−1(αi)xi)T (Q′(αi)xi)
||Q−1(αi)Q′(αi)xi|| . (11)

The right hand side of (10) is a polynomial in s of de-
gree 4. Our objective then will be to choose value of
s so that the residual is minimum at every iteration.

In the next section, we describe the Hybrid
method for finding an eigenpair if a symmetric
quadratic pencil Q(λ) in a given interval [a, b].

3 The New Hybrid Method:
The Hybrid method has two parts. In the first part,

we choose 3 sets of random eigenpairs

(
αi

vi

)
inside

the interval [a, b] where αi ∈ [a, b], and the vectors
vi, i = 1, 2, 3 are orthogonal to each other. We use
3-iterations of Parametrized Newton’s method as de-
scribed in section 2 for each pair and then use these
eigenvectors to run the Jacobi-Davidson method. Pre-
liminary results show that this Hybrid method always
converges to several eigenpairs in an interval and is
faster than the Jacobi-Davidson method.

Algorithm 1 Hybrid Method:
INPUT:

• The matrix M = I ∈ Rn×n, C , and K ∈ Rn×n

symmetric positive matrices .

• Three real numbers αi, i=1, 2, 3 as initial ap-
proximations of an eigenvalues inside the inter-
val [a b].

• An orthonormal matrix V = (v1, v2, v3).

OUTPUT:
An approximate eigenpair of the QEP in the interval
[a b].

Step 1: Find three approximate eigenparis (αi, vi)
using the Parametrized Newton’s method described
in Section 2 (run only maximum of three iterations).

Setp 2: Apply the Jacobi-Davidson method with the
eigenvectors obtained in the Step 1 and a shift α
choosing it as one of the eigenvalues αi, i = 1, 2, 3
appropriately (depending upon the location of the
eigenvalue sought).

Step 3: Check if norm of the residual defined in
equation (9) is less than a given tolerance. If so Stop.
Otherwise, expand the search space V and return to
Step 2.

4 Results of Numerical Experiments:

In the following, we present our results of numerical
experiments on comparison between the Jacobi-
Davidson Method and the Hybrid method. In our
experiments, M is chosen as an identity matrix, and
C, K are choosen as arbitary symmetric positive
definite matrices of order 500 and 800. Maximum
number of iterations = 20 and tolerance = 10−4.
Each graph shows the log of the residual with every
iteration.

Example 1
Matrix size(n) = 500, Interval [41.5 43.5]
The approximate initial eigenvalue determined by the
Parametrized Newton method = 42.0307903.
Exact eigenvalues in interval [41.5 43.5] are:
41.59431775969728, 41.62015325607620,
41.93211289355256, 43.00123828531239.

TABLE 1: Convergence comparison between
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the Hybrid method and the Jacobi-Davidson
method for Example 1

Methods Residual Iteration Eigenvalue

Hybrid 1.9e−9 2 41.93211
JD No convergence 20

Figure 1: Norm of log of Residual verses Iteration

0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

iteration

no
rm

 o
f l

og
 o

f r
es

id
ua

l

Hybrid
only Jacobi

Example 2
Matrix size(n) = 800, Interval [70 73]
The approximate initial eigenvalue determined by the
Parametrized Newton method = 71.063630762458.
Exact eigenvalues in interval [70 73] are:
71.48881531878268, 72.89726841255406.

TABLE 2: Convergence comparison between
the Hybrid method and the Jacobi-Davidson
method for Example 2

Methods Residual Iteration Eigenvalue

Hybrid 6.61e−6 1 71.4888153978
JD No convergence 20

Figure 2: Norm of log of Residual verses Iteration
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5 Conclusion
The quadratic eigenvalue problem arises in a wide va-
riety of engineering applications, including vibration
analysis of structures, model updating in dynamics
structures, acoustic studies, etc. In most of these ap-
plications, however, what is needed is the knowledge
of a few eigenvalues and eigenvectors and in many
cases just an estimate of an eigenvalue in a given in-
terval. A Newton type method is quite suitable for this
purpose. In this paper, a new Newton type method is
first proposed to find an approximation of an eigen-
pair of a symmetric positive definite quadratic ma-
trix pencil, and then a hybrid method blending this
new method with the well-known Jacobi-Davidson
method, is developed for finding an estimate of an
eigenvalue in a given interval. Numerical experi-
mental results show that the hybrid method converges
faster than the Jacobi-Davidson method alone; indeed,
in some cases when the Jacobi-Davidson method did
not converge at all, the new method worked quite well.

The method is parametric in nature and the con-
vergence and rate of convergence depends upon the
appropriate choice of the parameter. Studies on how
to choose it properly to guarantee or accelerate the
convergence is currently underway and will be re-
ported in a future paper.
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