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Abstract: - The genetic material that encodes the unique characteristics of each individual such as gender, eye 

color, and other human features is the well-known DNA. In this work, we introduce an anomaly intrusion 

detection system, built on the notion of a DNA sequence or gene, which is responsible for the normal network 

traffic patterns. Subsequently, the system detects suspicious activities by searching the “normal behavior DNA 

sequence” through string matching. On the other hand, string matching is a computationally intensive task and 

can be converted into a potential bottleneck without high-speed processing. Furthermore, conventional 

software-implemented string matching algorithms have not kept pace with the ever increasing network speeds. 

As a result, we adopt a monitoring phase that is hardware-implemented with the intention that DNA pattern 

matching is performed at wire-speed. Finally, we provide the details of our FPGA implementation of the 

bioinformatics-based string matching technique.  

 

Key-Words: - FPGA, anomaly identification, Network Intrusion Detection, DNA computing, pattern matching, 

bioinformatics. 

 

1 Introduction
The majority of Network Intrusion Detection 

Systems (NIDS) inspect the network packet 

payload to check for predefined signature strings 

starting at an arbitrary location. This process is 

often referred to as “signature-based deep packet 

inspection” NID. Other systems construct a model 

for the normal behavior of the Network and then 

flag any activity that deviates from this model as a 

suspicious behavior or anomaly. This process is 

called “anomaly-based” NID. Some of the previous 

work in anomaly identification was network-based, 

such as in [12], which proposed a system that learns 

the normal range of values for 33 fields of the 

Ethernet, IP, TCP, UDP, and ICMP protocols. 

Afterwards, the system checks incoming packets 

for deviations from this range. Other approaches, 

called host-based such as in [3], build a user 

signature by encoding user’s command sequences 

or normal behavior in a DNA strand. Then the 

system uses a unique variation of Smith-Waterman 

pair-wise alignment algorithm to compare user’s 

current session with the pre-produced signature. 

Others, such as in [5], profile processes according 

to system calls emitted by processes in response to 

a certain input. Subsequently, it proposes a 

behavioral distance as a means to detect an attack 

on one process that causes its behavior to deviate 

from that of another. The most computationally 

extensive part in anomaly identification is pattern-

matching. Accordingly, previous work in hardware 

exact pattern-matching architecture was proposed 

such as in [2]. In this work, a new Content 

Addressable Memory-based (CAM) architecture, 

able to match variable-length patterns with fixed-

length keywords or “Snort keywords”, is suggested. 

This was achieved at a rate of one character per 

clock cycle. Matching time is a function of the 

length of the pattern. Consequently, Nilsen et al. 

[13] introduced another CAM-based architecture in 

which the length of each word is independent from 

the others, in contrast to common CAMs where all 

words have the same length. In this exertion we 

present a framework for a bioinformatics-based 

network anomaly identification system. The system 

works in two phases. In the first phase, we build the 

DNA sequence responsible for the normal network 

traffic rates. A program is developed to capture 

incoming packets for a predetermined time to 

construct the basic building structure or codon of 

the DNA sequence. Once the computer DNA 

sequence has been created, the second phase sends 

the new base structures generated by real time 

network activity to the FPGA pattern matching 

module.  In this module, new base structures are 

compared to existing structures contained within 

the DNA sequence. We will show that the proposed 
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system can handle fixed-length patterns at a rate of 

one character per cycle. Moreover, the system, with 

a slight modification, can handle variable-length 

patterns.  

 

In the next few sections we discuss the algorithm, 

the implementation details of the software 

application, and the building blocks of the proposed 

hardware module along with details of its 

operation. The following sections include 

background, methodology, and the simulation and 

implementation results. Finally, we present some 

statistics after using the 1999 DARPA intrusion 

detection dataset for training and testing the system 

[4], and a summary and our conclusions. 

 

 

2 Background 

The process that was summarized in the 

introduction section is shown below in Figure 1. In 

the next few lines, we provide the necessary 

background in order to explain our approach. 
 

 

 
 

Deoxyribonucleic Acid (DNA) is made of two 

strands of complementary pairs of nucleotides. 

Each strand is made of different sequences of four 

bases (nucleotides) Adenine, Guanine, Cytosine, 

and Thymine. DNA has tremendous information 

storage capacity. For example, only 1 gram of DNA 

contains as much information as 1 trillion CD’s [6]. 

In addition, any DNA sequence can be synthesized 

in any desirable length. Genes are variable-length 

combinations of fixed-length combinations or 

codons of these bases. Different combinations of 

codons generate different genes. Therefore, unique 

physical characteristics such as gender, hair color, 

and height are all encoded in the human gene. 

Recent research, The Human Genome Project, has 

shown that certain genes and mutations to other 

genes are responsible for undesired characteristics 

and certain conditions negatively affecting human 

health. These genes are considered DNA 

anomalies. It has been proven that some external 

factors can lead to mutations of human genes 

resulting in diseases such as X-ray and radioactive 

materials [8]. 

 

Yu et al., [16] have proposed that every computer 

system can be given a DNA characterization that 

contains all sequences or genes responsible for the 

important characteristics of a specific monitored 

system. These characteristics include network 

traffic, modification of system files, sequence of 

system calls, and user behavior. In this work, we 

propose and build a DNA sequence responsible for 

the monitored system normal network traffic. 

 

Prior to generating the DNA sequence for the 

network traffic, the structure of the fundamental 

base must first be determined.  

As shown in Figure 2, the proposed base structure 

is constructed of five different categories of 

information that are collected for a predetermined 

time. 
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Similar to humans, the initial DNA sequences are 

predetermined on inception and ideally do not 

cause the system any harm. However, mutations to 

the DNA are possible, resulting in abnormal 

behavior [9]. Hu proposed [7] that malicious 

software or users intruding upon a computer system 

can have the capability of “mutating a computer’s 

normal characteristics” thereby causing various 

degrees of damage. However, by recognizing 

intrusions early enough, the damage can be limited 

and more rapid recovery is possible. Consequently, 

the development of an effective intrusion detection 

system can serve as a deterrent to intrusions as well 

as prevent hard-to-repair or extensive permanent 

damage. 

 

 

3 Methodology 
In the following few lines, we provide a description 

of the proposed system operating steps. The 

proposed system has two parts: 

 

Part I: Network traffic DNA sequence generation or 

Figure 1. The block diagram of the system 

Figure 2. The Fundamental base structure 
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the offline training phase. 

Part II:  Network monitoring or the online 

monitoring phase. 
 
Part I (TRAINING PHASE) 

The aim of this phase is to collect raw data for a certain predefined 

time that is called the Training Time (T1) in order to produce a 

number of observations or base structures. The time of each 

observation is (T2). It is imperative that close structures are not 

repeated. Therefore, each field in the base structure is rounded to a 

certain threshold (Th).  

Input: T1[training time], T2 [time of one observation], 

Th[threshold value] 

Output: Txt file containing DNA sequence of Network traffic 

behavior 

Algorithm Body: 

Num of packets=0 

Packet len =0 

TCP num =0 

UDP num =0 

ICMP num =0 

IGMP num=0 

DNA file= file.clear() 

for(T1)  

     for (T2) 

         for each(packet with destination address = to host m/c) 

               Num of packets++ 

               ip= ip header 

               packet len = packet len+ ip.total_len 

               switch(ip.protocol) 

                     case ‘tcp’: TCP num++ 

                     case ‘udp’: UDP num++ 

                     case ‘icmp’: ICMP num++ 

                     case ‘igmp’: IGMP num++ 

              end switch; 

      end for; 

     avg packet len = packet len / num of packets 

     Round(avg packet,TCP num,UDP num,ICMP num,IGMP num, 

Th) 

     Codon(avg packet,TCP num,UDP num,ICMP num,IGMP num) 

     
            if (DNA file does not contain codon) then 

                 Add codon to DNA file 

             else 
                 Codon freq++ 

end for;        

Part II (MONITORING PHASE) 
The aim of this phase is to monitor the rate of traffic and produce 

codons (observations) and search the DNA file for it, if it does not 

exist then this behaviour is considered an anomaly (malicious 

behavior) 

 Input: T2 [time of one observation] same as in phase I, 

Th[threshold value] same as in phase I,  

Output: codon found or not 

for (T2) 

         for each(packet with destination address = to host m/c) 

               Num of packets++ 

               ip= ip header 

               packet len = packet len+ ip.total_len 

               switch(ip.protocol) 

                     case ‘tcp’: TCP num++ 

                     case ‘udp’: UDP num++ 

                     case ‘icmp’: ICMP num++ 

                     case ‘igmp’: IGMP num++ 

              end switch; 

      end for; 

      avg packet len = packet len / num of packets 

      Round(avg packet,TCP num,UDP num,ICMP num,IGMP num, 

Th) 

     Codon(avg packet,TCP num,UDP num,ICMP num,IGMP num) 

                 Send codon to the hardware module for wire speed DNA 

search 

                        if (found) then 

                                 Repeat monitoring 

                         else 

                                It is an attack 

                              end if  

End algorithm.  

 

4 Implementation 
In this section we describe the software 

implementation and the hardware search module. 

4.1. DNA sequence-producing Software  
The software module was developed using Visual 

Studio .NET EDK and encoded in C# language. It 

is composed of an observation part that takes the 

time of one observation and the threshold value and 

produces the DNA sequence. Later on, this 

sequence is downloaded onto the CAM-based 

hardware module for the monitoring phase. The 

program was developed and tested on a 1.8-GHz 

Pentium-based machine with 1024 MB memory.  
 

4.2. The hardware monitoring module 
The hardware module is used for performing the 

DNA pattern matching at the monitoring phase. 

Emulating physical DNA pattern matching that 

exploits a great level of parallelism O (1), 

associative memory modules are used to buffer the 

generated DNA. Each digit in the generated 

structure field is mapped to two nucleotides or base 

and each base is represented by two bits. Based on 

the training data, a five-digit limit was placed for 

each field in the base structure in order to produce a 

fixed size codon of 100 bits. 

 

The micro-architecture, along with its operation 

details, is described using a finite state machine 

approach (FSM) as shown in Figure 3. The 

machine operation takes place through four basic 

states. These are summarized as follows: 
 

 
 

The initial state “Init” holds back the execution of 

the successive states until the “start” signal is 

triggered and furthermore resets all hardware 

Figure 3. The finite state machine of the micro-architecture 

(The FPGA string matching module shown in Fig. 1) 
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modules. In the following state “Fill_shift_reg”, the 

100-bit codon is buffered in a 100-bit shift register 

that shifts 10 bits each clock cycle. A “full” signal 

indicates that the 100-bit codon is available in the 

shift register. A “write” signal transfers execution 

to “write_CAM” state during which the codon is a 

part of the normal DNA sequence and hence is 

buffered in one of the associative memory modules 

according to the module addressing signal. A 

“search” signal transfers execution to “check-

found” state during which the codon is a new 

observation that must be checked to ensure that it a 

normal DNA sequence. The Content-Addressable 

Memory (CAM) modules are all searched in 

parallel and a “found” signal indicates if it is an 

attack or not. Figure 4 shows the top level 

schematic diagram of the micro-architecture. To 

handle variable-length patterns, this CAM module 

can be further subdivided into ten ten-bit modules. 

The control unit has to accommodate this 

modification in order to signal end-of-codon. 
 

 
 

5 Software Testing 
We performed the system evaluation on the “1999 

DARPA off-line IDS evaluation data set” [11]. The 

set consists of network traffic profiles (tcpdump 

files) that are collected at two points from a 

simulated local network of an imaginary air force 

base over a five week period. The simulated system 

consists of four real "victim" machines running 

SunOS, Solaris, Linux, and Windows NT, a Cisco 

router, and a simulation of a local network with 

hundreds of other hosts and thousands of users and 

an Internet connection without a firewall. We 

trained the system on five days of attack-free 

network traffic (week 1) collected from a sniffer 

between the router and victim machines 

(inside.tcpdump). Then it was tested on five days of 

traffic from the same point (week 4) during which 

time there were 183 attacks. The test set includes a 

list of all attacks, labeled with the victim IP 

address, time, type, and a brief description. We 

chose a single victim machine (172.16.112.50) and 

filtered all the packets destined for this machine to 

build its DNA sequence as it has experienced most 

of the denial-of-service attacks simulated in week 

4. 

 

5.1. Testing results 
The dataset contains three types of attacks; remote-

to-local, user-to root, and denial-of-service [10]. 

Our system builds a model for the normal network 

traffic pattern. Accordingly, we can focus mainly 

on the denial-of-service attacks. Figure 5 shows the 

DNA sequence graph for the chosen machine that 

contains 592 codons (X-axis) and the values for 

each field in each codon (Y-axis). Codons in this 

graph are generated with observation time that is 

equal to ten seconds. The threshold value is equal 

to ten and repetitions were omitted. 
 

 
 

Figure 6 shows codons generated with observation 

time equals 10 seconds, threshold value equals 1 

and repetitions omitted, as the obvious number of 

codons is nearly six times more because similar 

sequences are not treated as equal. 

 

Figure 4: The block diagram of the micro-architecture 

Figure 5. DNA sequence generated from week 1 

training (Th=10) 

Training graph (Th=10)
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Figure 6. DNA sequence generated from week 1 

training (Th=1) 

Training graph ( Th=1)
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We identified 370 attacking codons at different 

times on Monday, week 4 from the supplied attack 

list destined for the selected machine. There were 

some attacks that lasted for 5 minutes generating up 

to 30 codons. The system discovered them from the 

first codon. When a threshold value of 10 was used, 

only 126 attacking codons were identified with 

false positive rate equal 7 per day. However, all 

attacking codons were identified with false positive 

equal to 453 when the threshold value is set to 1. 

The system can be adaptable to the level of security 

needed by assigning different threshold values. 

Figure 7 shows observations generated from 

Monday (inside.tcpdump) of week 4, where a 

“smurf” attack shows an abnormal ICMP behavior 

(codons 324 and 325). Thus, they are marked as 

attacking codons. 

 

 

 

6 Hardware Simulation 
The simulation of the designed micro-architecture 

is performed on the Logic Simulator of Mentor 

Graphics Modelsim 6.1.  The first operation 

performed is filling the 100-bit shift register with 

codons at a rate of 10 bits per clock cycle during 

the “Fill_shift_reg” state. Figure 8 depicts this 

operation. The input codon is in this case 

“064190681A06C1B0701C0741D” and the “Shl” 

signal is active so the parallel port output is left-

shifted each clock cycle until the shift register is 

completely full after 10 clock cycles.  
 

 
 

Buffering the 100-bit codon in one of the CAM is 

shown in Figure 9  
 

 
 

modules “cam_sel” signal selects CAM2, 

“CAM2_we” activates the write operation of 

CAM2.  Figure 10 provides the simulation result 

for the search operation. The “search” signal 

provides the codon to search for to all the CAM 

modules to be searched in parallel, “match2” signal 

is high indicating that this codon is found in CAM2 

and so the whole system “match” signal is high too. 
 

 
 

7 Implementation Results 
We have used the Virtex IV FPGA family to 

implement our design [15]. Most of the hardware 

implemented string matching algorithms are 

variations of sequential algorithms. For example, 

KMP [1] or CAM architectures were developed for 

snort (IDS) rules [13] and [2].   However, our 

model is emulation to a single DNA strand pattern-

matching process. It searches for fixed-length 

Figure 9. Simulation of buffering 100-bit codon in a selected 

CAM module 
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Figure 8. Simulation of 100-bit codon loading. 
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patterns or codons in   variable-length combinations 

of these codons or Gene. As a result, comparison 

with other architectures is not practicable. In 

Appendix A, we provide the implementation results 

based on the consumed area in CLBs, where CLB 

is the abbreviation for “Configurable Logic Block”. 

The FPGA is composed of hundreds of the 

configurable logic blocks that are programmed to 

perform any logic or sequential operation. In 

addition, we provide a summary of the 

implementation timing reports. Moreover, the 

design floor plan is also provided. 

 
 

8 Summary and Conclusion 
Network behavior anomaly identification is a new 

alternative in the existing IDS technology. 

Anomaly identification improves on signature 

detection by modeling the space of “use” instead of 

“misuse.” It also eliminates the need for frequent 

signature updates and provides enhanced 

performance. In this work, we have introduced an 

anomaly identification system that encodes the 

network behavior in a DNA strand. The generated 

DNA sequence specifies the unique behavior of this 

monitored system. In order to perform packet 

inspection at wire-speed, we have proposed and 

implemented an FPGA-based micro-architecture 

employing associative memory modules. The 

special features of this (IDS) can be summarized as 

follows: 

• The system has a software interface that 

performs the offline training that is utilized 

for generating the DNA sequence.  

• This sequence is relatively easy to adapt to 

new types of benign traffic. 

• The system can be adapted to the degree of 

protection needed through changing the 

threshold value.  

• DNA pattern matching is implemented on 

FPGA to speed up online processing. 

• Searching takes only one clock cycle using 

associative or content-addressable memory 

modules emulating organic DNA pattern 

matching. Ten more clock cycles are 

required for buffering the entire codon. 

• All generated codons are of fixed size of 

fifty bases that is equal to 100 bits versus 

organic codons of three bases. 

Based on this work, we believe that the proposed 

DNA-based methodology is a promising new area 

for IDS research. The implementation of the micro-

architecture, shown in the timing reports, provides 

a maximum path delay of slightly more than four 

and a half nano seconds. This value is equivalent to 

about 45-bit delay in a 10 Gigabit Ethernet. We are 

not counting the buffering delays encountered with 

each sniffed packet. Considering time slices 

between consecutive observations, we reason that 

such a delay is quite acceptable for most of today’s 

fast networks.  
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APPENDIX A: IMPLEMENTATION REPORTS  
 

Implementation reports 

In this appendix, we provide the details of the 

implementation reports as they were made available by 

the Xilinx CAD software [14]. 

 

Design Information 

 Target Device : xc4vlx200 

 Target Package : ff1513 

 Target Speed : -12 

Design Summary 

 Number of Slices : 3313 out of 89088     

3% 

 Number of CLBs : 828 out of 22272     

3% 

 Slice Flip Flops : 808 out of 178176     

0% 

 4 input LUTs : 4443 out of 178176     

2% 

 Number of bonded IOBs : 17 out of 964     1% 

 Total equivalent gate count for design : 4261 

Timing Summary 

 Minimum period : 8.2870ns 

 Maximum frequency : 120.665MHz  

   Maximum combinational path delay : 4.565ns 

 

The Floor Plan 

 

 

APPENDIX B: (SCHEMATICS) 

 

 
 

 

Figure 14. The circuit diagram 

of the 100-bit shift register. Figure 11. The floor plan 

 

Figure 12. The circuit diagram of 

the address generator. 

Figure 13. The circuit diagram of the entire design 
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