
Design and Implementation of an Anomaly-based Network Intrusion

Detection System Utilizing the DNA Model

RIHAM MAHDY, MAGDY SAEB

Computer Engineering Department

Arab Academy for Science, Technology & Maritime Transport,

School of Engineering, Alexandria

 EGYPT

riham_mahdy@aast.edu

Abstract: - The genetic material that encodes the unique characteristics of each individual such as gender, eye

color, and other human features is the well-known DNA. In this work, we introduce an anomaly intrusion

detection system, built on the notion of a DNA sequence or gene, which is responsible for the normal network

traffic patterns. Subsequently, the system detects suspicious activities by searching the “normal behavior DNA

sequence” through string matching. On the other hand, string matching is a computationally intensive task and

can be converted into a potential bottleneck without high-speed processing. Furthermore, conventional

software-implemented string matching algorithms have not kept pace with the ever increasing network speeds.

As a result, we adopt a monitoring phase that is hardware-implemented with the intention that DNA pattern

matching is performed at wire-speed. Finally, we provide the details of our FPGA implementation of the

bioinformatics-based string matching technique.

Key-Words: - FPGA, anomaly identification, Network Intrusion Detection, DNA computing, pattern matching,

bioinformatics.

1 Introduction
The majority of Network Intrusion Detection

Systems (NIDS) inspect the network packet

payload to check for predefined signature strings

starting at an arbitrary location. This process is

often referred to as “signature-based deep packet

inspection” NID. Other systems construct a model

for the normal behavior of the Network and then

flag any activity that deviates from this model as a

suspicious behavior or anomaly. This process is

called “anomaly-based” NID. Some of the previous

work in anomaly identification was network-based,

such as in [12], which proposed a system that learns

the normal range of values for 33 fields of the

Ethernet, IP, TCP, UDP, and ICMP protocols.

Afterwards, the system checks incoming packets

for deviations from this range. Other approaches,

called host-based such as in [3], build a user

signature by encoding user’s command sequences

or normal behavior in a DNA strand. Then the

system uses a unique variation of Smith-Waterman

pair-wise alignment algorithm to compare user’s

current session with the pre-produced signature.

Others, such as in [5], profile processes according

to system calls emitted by processes in response to

a certain input. Subsequently, it proposes a

behavioral distance as a means to detect an attack

on one process that causes its behavior to deviate

from that of another. The most computationally

extensive part in anomaly identification is pattern-

matching. Accordingly, previous work in hardware

exact pattern-matching architecture was proposed

such as in [2]. In this work, a new Content

Addressable Memory-based (CAM) architecture,

able to match variable-length patterns with fixed-

length keywords or “Snort keywords”, is suggested.

This was achieved at a rate of one character per

clock cycle. Matching time is a function of the

length of the pattern. Consequently, Nilsen et al.

[13] introduced another CAM-based architecture in

which the length of each word is independent from

the others, in contrast to common CAMs where all

words have the same length. In this exertion we

present a framework for a bioinformatics-based

network anomaly identification system. The system

works in two phases. In the first phase, we build the

DNA sequence responsible for the normal network

traffic rates. A program is developed to capture

incoming packets for a predetermined time to

construct the basic building structure or codon of

the DNA sequence. Once the computer DNA

sequence has been created, the second phase sends

the new base structures generated by real time

network activity to the FPGA pattern matching

module. In this module, new base structures are

compared to existing structures contained within

the DNA sequence. We will show that the proposed

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 470

system can handle fixed-length patterns at a rate of

one character per cycle. Moreover, the system, with

a slight modification, can handle variable-length

patterns.

In the next few sections we discuss the algorithm,

the implementation details of the software

application, and the building blocks of the proposed

hardware module along with details of its

operation. The following sections include

background, methodology, and the simulation and

implementation results. Finally, we present some

statistics after using the 1999 DARPA intrusion

detection dataset for training and testing the system

[4], and a summary and our conclusions.

2 Background

The process that was summarized in the

introduction section is shown below in Figure 1. In

the next few lines, we provide the necessary

background in order to explain our approach.

Deoxyribonucleic Acid (DNA) is made of two

strands of complementary pairs of nucleotides.

Each strand is made of different sequences of four

bases (nucleotides) Adenine, Guanine, Cytosine,

and Thymine. DNA has tremendous information

storage capacity. For example, only 1 gram of DNA

contains as much information as 1 trillion CD’s [6].

In addition, any DNA sequence can be synthesized

in any desirable length. Genes are variable-length

combinations of fixed-length combinations or

codons of these bases. Different combinations of

codons generate different genes. Therefore, unique

physical characteristics such as gender, hair color,

and height are all encoded in the human gene.

Recent research, The Human Genome Project, has

shown that certain genes and mutations to other

genes are responsible for undesired characteristics

and certain conditions negatively affecting human

health. These genes are considered DNA

anomalies. It has been proven that some external

factors can lead to mutations of human genes

resulting in diseases such as X-ray and radioactive

materials [8].

Yu et al., [16] have proposed that every computer

system can be given a DNA characterization that

contains all sequences or genes responsible for the

important characteristics of a specific monitored

system. These characteristics include network

traffic, modification of system files, sequence of

system calls, and user behavior. In this work, we

propose and build a DNA sequence responsible for

the monitored system normal network traffic.

Prior to generating the DNA sequence for the

network traffic, the structure of the fundamental

base must first be determined.

As shown in Figure 2, the proposed base structure

is constructed of five different categories of

information that are collected for a predetermined

time.

Average

packet

length

Number of

TCP

packets

Number of

UDP

packets

Number of

ICMP

packets

Number of

IGMP

packets

Similar to humans, the initial DNA sequences are

predetermined on inception and ideally do not

cause the system any harm. However, mutations to

the DNA are possible, resulting in abnormal

behavior [9]. Hu proposed [7] that malicious

software or users intruding upon a computer system

can have the capability of “mutating a computer’s

normal characteristics” thereby causing various

degrees of damage. However, by recognizing

intrusions early enough, the damage can be limited

and more rapid recovery is possible. Consequently,

the development of an effective intrusion detection

system can serve as a deterrent to intrusions as well

as prevent hard-to-repair or extensive permanent

damage.

3 Methodology
In the following few lines, we provide a description

of the proposed system operating steps. The

proposed system has two parts:

Part I: Network traffic DNA sequence generation or

Figure 1. The block diagram of the system

Figure 2. The Fundamental base structure

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 471

the offline training phase.

Part II: Network monitoring or the online

monitoring phase.

Part I (TRAINING PHASE)

The aim of this phase is to collect raw data for a certain predefined

time that is called the Training Time (T1) in order to produce a

number of observations or base structures. The time of each

observation is (T2). It is imperative that close structures are not

repeated. Therefore, each field in the base structure is rounded to a

certain threshold (Th).

Input: T1[training time], T2 [time of one observation],

Th[threshold value]

Output: Txt file containing DNA sequence of Network traffic

behavior

Algorithm Body:

Num of packets=0

Packet len =0

TCP num =0

UDP num =0

ICMP num =0

IGMP num=0

DNA file= file.clear()

for(T1)

 for (T2)

 for each(packet with destination address = to host m/c)

 Num of packets++

 ip= ip header

 packet len = packet len+ ip.total_len

 switch(ip.protocol)

 case ‘tcp’: TCP num++

 case ‘udp’: UDP num++

 case ‘icmp’: ICMP num++

 case ‘igmp’: IGMP num++

 end switch;

 end for;

 avg packet len = packet len / num of packets

 Round(avg packet,TCP num,UDP num,ICMP num,IGMP num,

Th)

 Codon(avg packet,TCP num,UDP num,ICMP num,IGMP num)

 if (DNA file does not contain codon) then

 Add codon to DNA file

 else
 Codon freq++

end for;

Part II (MONITORING PHASE)
The aim of this phase is to monitor the rate of traffic and produce

codons (observations) and search the DNA file for it, if it does not

exist then this behaviour is considered an anomaly (malicious

behavior)

 Input: T2 [time of one observation] same as in phase I,

Th[threshold value] same as in phase I,

Output: codon found or not

for (T2)

 for each(packet with destination address = to host m/c)

 Num of packets++

 ip= ip header

 packet len = packet len+ ip.total_len

 switch(ip.protocol)

 case ‘tcp’: TCP num++

 case ‘udp’: UDP num++

 case ‘icmp’: ICMP num++

 case ‘igmp’: IGMP num++

 end switch;

 end for;

 avg packet len = packet len / num of packets

 Round(avg packet,TCP num,UDP num,ICMP num,IGMP num,

Th)

 Codon(avg packet,TCP num,UDP num,ICMP num,IGMP num)

 Send codon to the hardware module for wire speed DNA

search

 if (found) then

 Repeat monitoring

 else

 It is an attack

 end if

End algorithm.

4 Implementation
In this section we describe the software

implementation and the hardware search module.

4.1. DNA sequence-producing Software
The software module was developed using Visual

Studio .NET EDK and encoded in C# language. It

is composed of an observation part that takes the

time of one observation and the threshold value and

produces the DNA sequence. Later on, this

sequence is downloaded onto the CAM-based

hardware module for the monitoring phase. The

program was developed and tested on a 1.8-GHz

Pentium-based machine with 1024 MB memory.

4.2. The hardware monitoring module
The hardware module is used for performing the

DNA pattern matching at the monitoring phase.

Emulating physical DNA pattern matching that

exploits a great level of parallelism O (1),

associative memory modules are used to buffer the

generated DNA. Each digit in the generated

structure field is mapped to two nucleotides or base

and each base is represented by two bits. Based on

the training data, a five-digit limit was placed for

each field in the base structure in order to produce a

fixed size codon of 100 bits.

The micro-architecture, along with its operation

details, is described using a finite state machine

approach (FSM) as shown in Figure 3. The

machine operation takes place through four basic

states. These are summarized as follows:

The initial state “Init” holds back the execution of

the successive states until the “start” signal is

triggered and furthermore resets all hardware

Figure 3. The finite state machine of the micro-architecture

(The FPGA string matching module shown in Fig. 1)

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 472

modules. In the following state “Fill_shift_reg”, the

100-bit codon is buffered in a 100-bit shift register

that shifts 10 bits each clock cycle. A “full” signal

indicates that the 100-bit codon is available in the

shift register. A “write” signal transfers execution

to “write_CAM” state during which the codon is a

part of the normal DNA sequence and hence is

buffered in one of the associative memory modules

according to the module addressing signal. A

“search” signal transfers execution to “check-

found” state during which the codon is a new

observation that must be checked to ensure that it a

normal DNA sequence. The Content-Addressable

Memory (CAM) modules are all searched in

parallel and a “found” signal indicates if it is an

attack or not. Figure 4 shows the top level

schematic diagram of the micro-architecture. To

handle variable-length patterns, this CAM module

can be further subdivided into ten ten-bit modules.

The control unit has to accommodate this

modification in order to signal end-of-codon.

5 Software Testing
We performed the system evaluation on the “1999

DARPA off-line IDS evaluation data set” [11]. The

set consists of network traffic profiles (tcpdump

files) that are collected at two points from a

simulated local network of an imaginary air force

base over a five week period. The simulated system

consists of four real "victim" machines running

SunOS, Solaris, Linux, and Windows NT, a Cisco

router, and a simulation of a local network with

hundreds of other hosts and thousands of users and

an Internet connection without a firewall. We

trained the system on five days of attack-free

network traffic (week 1) collected from a sniffer

between the router and victim machines

(inside.tcpdump). Then it was tested on five days of

traffic from the same point (week 4) during which

time there were 183 attacks. The test set includes a

list of all attacks, labeled with the victim IP

address, time, type, and a brief description. We

chose a single victim machine (172.16.112.50) and

filtered all the packets destined for this machine to

build its DNA sequence as it has experienced most

of the denial-of-service attacks simulated in week

4.

5.1. Testing results
The dataset contains three types of attacks; remote-

to-local, user-to root, and denial-of-service [10].

Our system builds a model for the normal network

traffic pattern. Accordingly, we can focus mainly

on the denial-of-service attacks. Figure 5 shows the

DNA sequence graph for the chosen machine that

contains 592 codons (X-axis) and the values for

each field in each codon (Y-axis). Codons in this

graph are generated with observation time that is

equal to ten seconds. The threshold value is equal

to ten and repetitions were omitted.

Figure 6 shows codons generated with observation

time equals 10 seconds, threshold value equals 1

and repetitions omitted, as the obvious number of

codons is nearly six times more because similar

sequences are not treated as equal.

Figure 4: The block diagram of the micro-architecture

Figure 5. DNA sequence generated from week 1

training (Th=10)

Training graph (Th=10)

-200

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600 700

Codon type

N
u

m
b

e
r

o
f

p
a

c
k

e
ts

Avg Packet size

TCP

UDP

ICMP

IGMP

Figure 6. DNA sequence generated from week 1

training (Th=1)

Training graph (Th=1)

-200

0

200

400

600

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500

Codon type

N
u

m
b

e
r

o
f

p
a

c
k

e
ts

Avg packet size

TCP

UDP

ICMP

IGMP

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 473

We identified 370 attacking codons at different

times on Monday, week 4 from the supplied attack

list destined for the selected machine. There were

some attacks that lasted for 5 minutes generating up

to 30 codons. The system discovered them from the

first codon. When a threshold value of 10 was used,

only 126 attacking codons were identified with

false positive rate equal 7 per day. However, all

attacking codons were identified with false positive

equal to 453 when the threshold value is set to 1.

The system can be adaptable to the level of security

needed by assigning different threshold values.

Figure 7 shows observations generated from

Monday (inside.tcpdump) of week 4, where a

“smurf” attack shows an abnormal ICMP behavior

(codons 324 and 325). Thus, they are marked as

attacking codons.

6 Hardware Simulation
The simulation of the designed micro-architecture

is performed on the Logic Simulator of Mentor

Graphics Modelsim 6.1. The first operation

performed is filling the 100-bit shift register with

codons at a rate of 10 bits per clock cycle during

the “Fill_shift_reg” state. Figure 8 depicts this

operation. The input codon is in this case

“064190681A06C1B0701C0741D” and the “Shl”

signal is active so the parallel port output is left-

shifted each clock cycle until the shift register is

completely full after 10 clock cycles.

Buffering the 100-bit codon in one of the CAM is

shown in Figure 9

modules “cam_sel” signal selects CAM2,

“CAM2_we” activates the write operation of

CAM2. Figure 10 provides the simulation result

for the search operation. The “search” signal

provides the codon to search for to all the CAM

modules to be searched in parallel, “match2” signal

is high indicating that this codon is found in CAM2

and so the whole system “match” signal is high too.

7 Implementation Results
We have used the Virtex IV FPGA family to

implement our design [15]. Most of the hardware

implemented string matching algorithms are

variations of sequential algorithms. For example,

KMP [1] or CAM architectures were developed for

snort (IDS) rules [13] and [2]. However, our

model is emulation to a single DNA strand pattern-

matching process. It searches for fixed-length

Figure 9. Simulation of buffering 100-bit codon in a selected

CAM module

CAM selector

Write address

CAM2 input

CAM2 write enable

Monday Test Data (with attacks)

-5000

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200 250 300 350

Codon type

N
u

m
b

e
r

o
f
p

a
c
k
e
ts

Avg packet len

TCP

UDP

ICMP

IGMP

Figure 7. Codons generated from week 4 (Monday)

testing data

 Smurf attack

Figure 8. Simulation of 100-bit codon loading.

100-bit codon

Parallel-port output

Figure 10. Simulation of searching for a codon in the

four CAM modules

CAM2 match

System match signal

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 474

patterns or codons in variable-length combinations

of these codons or Gene. As a result, comparison

with other architectures is not practicable. In

Appendix A, we provide the implementation results

based on the consumed area in CLBs, where CLB

is the abbreviation for “Configurable Logic Block”.

The FPGA is composed of hundreds of the

configurable logic blocks that are programmed to

perform any logic or sequential operation. In

addition, we provide a summary of the

implementation timing reports. Moreover, the

design floor plan is also provided.

8 Summary and Conclusion
Network behavior anomaly identification is a new

alternative in the existing IDS technology.

Anomaly identification improves on signature

detection by modeling the space of “use” instead of

“misuse.” It also eliminates the need for frequent

signature updates and provides enhanced

performance. In this work, we have introduced an

anomaly identification system that encodes the

network behavior in a DNA strand. The generated

DNA sequence specifies the unique behavior of this

monitored system. In order to perform packet

inspection at wire-speed, we have proposed and

implemented an FPGA-based micro-architecture

employing associative memory modules. The

special features of this (IDS) can be summarized as

follows:

• The system has a software interface that

performs the offline training that is utilized

for generating the DNA sequence.

• This sequence is relatively easy to adapt to

new types of benign traffic.

• The system can be adapted to the degree of

protection needed through changing the

threshold value.

• DNA pattern matching is implemented on

FPGA to speed up online processing.

• Searching takes only one clock cycle using

associative or content-addressable memory

modules emulating organic DNA pattern

matching. Ten more clock cycles are

required for buffering the entire codon.

• All generated codons are of fixed size of

fifty bases that is equal to 100 bits versus

organic codons of three bases.

Based on this work, we believe that the proposed

DNA-based methodology is a promising new area

for IDS research. The implementation of the micro-

architecture, shown in the timing reports, provides

a maximum path delay of slightly more than four

and a half nano seconds. This value is equivalent to

about 45-bit delay in a 10 Gigabit Ethernet. We are

not counting the buffering delays encountered with

each sniffed packet. Considering time slices

between consecutive observations, we reason that

such a delay is quite acceptable for most of today’s

fast networks.

References:

 [1] Baker, V. Prasanna, “Time and Area Efficient

Pattern Matching on FPGAs,” Proceedings of

the 12
th
 ACM International Symposium on

Field Programmable Gate Arrays, 2004.

[2] Bu, John A. Chandy, “FPGA-Based Network

Intrusion Detection using Content Addressable

Memories,” Proceedings of the 12
th
 Annual

IEEE Symposium on Field-Programmable

Custom Computing Machines, 2004.

[3] Coull S, Joel Branch, Joel Branch, Eric

Breimer, “Intrusion Detection: A

Bioinformatics Approach,” Proceedings of the

19th Annual Computer Security Applications

Conference, 2003.

[4] “DARPA Intrusion Detection Evaluation

Dataset”, [Online source], available at:

http://www.ll.mit.edu/IST/ideval/data/data_index.ht

m

[5] Gao D, Michael K. Reiter, Dawn Song,

“Behavioral Distance for Intrusion Detection,”

Proceedings of the 8
th
 International Symposium

On Recent Advances in Intrusion Detection,

2005.

[6] Gehani A, Thomas LaBean, John Reif, ”DNA-

Based Cryptography,” IMACS DNA-Based

Computers V, American Mathematical Society,

USA, 2000.

[7] Hu S, “An Intrusion Detection Scheme

Utilizing Teiresias to Determine a Computer’s

DNA Sequence Responsible for Network

Traffic,” Simon Fraser University, 2002.

[8] Jones N.C, P. Pevzner, An Introduction to

Bioinformatics Algorithms (Computational

Molecular Biology), MIT Press, 2004.

[9] Kim J, Peter Bentley “The Human Immune

System and Network Intrusion Detection,”

University College London, 1999.

[10] Kristopher Kendall, "A Database of

Computer attacks for the Evaluation of

Intrusion Detection Systems," Masters Thesis,

MIT, 1999.

[11] Lippmann, R., et al., "The 1999 DARPA

Off-Line Intrusion Detection Evaluation,"

Computer Networks, vol. 34(4), pp. 579-595,

2000.

[12] Mahoney M.V, Philip K. Chan, “PHAD:

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 475

Packet Header Anomaly Detection for

Identifying Hostile Network Traffic,” Florida

Institute of Technology Technical Report CS-

2001.

[13] Nilsen G, Jim Torresen, Oddvar Sorasen,

“A Variable Word-Width Content Addressable

Memory for Fast String Matching,”

Proceedings of Norchip conference, 2004.

[14] Xilinx, Inc. Synthesis and Verification

Guide, ISE 6.2i. Xilinx Inc.

[15] Xilinx, Inc. “Virtex 4 Family Overview”,

DS112 (v2.0), 2007.

[16] Yu, B., E. Byres, C. Howey, “Monitoring

Controller’s “DNA Sequence for System

Security,” BCIT, Burnaby, BC, 2001.

APPENDIX A: IMPLEMENTATION REPORTS

Implementation reports

In this appendix, we provide the details of the

implementation reports as they were made available by

the Xilinx CAD software [14].

Design Information

 Target Device : xc4vlx200

 Target Package : ff1513

 Target Speed : -12

Design Summary

 Number of Slices : 3313 out of 89088

3%

 Number of CLBs : 828 out of 22272

3%

 Slice Flip Flops : 808 out of 178176

0%

 4 input LUTs : 4443 out of 178176

2%

 Number of bonded IOBs : 17 out of 964 1%

 Total equivalent gate count for design : 4261

Timing Summary

 Minimum period : 8.2870ns

 Maximum frequency : 120.665MHz

 Maximum combinational path delay : 4.565ns

The Floor Plan

APPENDIX B: (SCHEMATICS)

Figure 14. The circuit diagram

of the 100-bit shift register. Figure 11. The floor plan

Figure 12. The circuit diagram of

the address generator.

Figure 13. The circuit diagram of the entire design

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 476

