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Abstract: - The research presented here utilises the ‘Generalised Frost-Dugdale law’ with a genetic algorithm 

in a numerical three-dimensional fatigue based optimisation study of a 7050-T7451 aluminium structure. 

Genetic algorithm has been utilised in many stress based optimisation applications, however to date, it has not 

been used in a three dimensional structural fatigue based optimisation study involving short crack lengths. The 

generalised Frost-Dugdale law was developed to allow for the accurate prediction of fatigue crack growth 

from short crack lengths. Consequently, design against fatigue failure can include the analysis of near-

threshold crack propagation. The structural optimisation procedure proposed integrates 3D geometrical 

modelling, structural analysis and optimization into one complete and automated computer-aided design 

process. This paper indicates that the proposed combined procedure provides a more accurate and robust 

optimised solution. It was discovered that the results resembled the solutions from other optimisation 

algorithms. As a result, this procedure illustrates a procedure for the design of light weight structures using a 

fatigue based optimisation in conjunction with a genetic algorithm. Furthermore, the possibility of the 

application of the generalised Frost-Dugdale model in design optimisation has been demonstrated.  
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1   Introduction 
The genetic algorithm concept has been growing 

since the early 1970s [1]. However only recently has 

this concept been applied to a variety of disciplines 

and real-world applications, demonstrating its 

commercial potential. The application of genetic 

algorithm to structural optimisation in the 

engineering industry was first studied by Goldberg 

[1, 2]. More recently Annicchiarico and Cerrolaza 

[3, 4] developed two- and three- dimensional 

structural stress based optimisation implementing a 

genetic algorithm, and modelled the finite element 

structures using β-splines. Genetic algorithms have 

rapidly become popular due to the robustness and 

the balance between efficiency and effectiveness in 

many different environments. The application of 

genetic algorithms to stress based structural and 

topology optimisation problems is relatively mature. 

However, the implementation for genetic algorithms 

to a fatigue based structural optimisation procedure 

has received little attention and the involvement of 

initial short cracks within the threshold region has 

yet to be considered. Therefore an investigation into 

the development and application of a genetic 

algorithm into fatigue based structural optimisation 

procedure involving short cracks within the 

threshold region is considered in this paper.  

Several structural optimisation algorithms in 

literature have been developed to account for 

damage tolerance issues and initial cracks, but to 

date none have analysed the effect of near-threshold 

crack propagation, i.e. short initial cracks in the low-

to-mid ∆K region. This is mainly due to the fact that 

these structural optimisation algorithms only use 

Paris like laws which are applicable only in Region 

II (Paris region). For these reasons the development 

of an optimisation procedure involving near-

threshold crack propagation was also investigated. 

 

 

2   Numerical Formulation 
2.1 Crack Growth Model 
2.1.1   Paris Law 

Fatigue crack growth has traditionally revolved 

around the belief that the crack growth rate, da/dN 

can be related to the stress intensity factor range, 

∆K, and/or the maximum stress intensity factor Kmax. 
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This correlation was first suggested by Paris et al [5] 

and resulted in the well known Paris equation: 

( )mKCdNda ∆=/      (1) 

where C and m are experimentally obtained 

constants that are considered to be constant for a 

particular material. This relationship has had a 

number of modifications to account for various 

observations, such as R ratio (R = Kmin / Kmax), Kmax 

effects [6, 7] and closure effects [8, 9]. The fatigue 

crack growth structural analysis program [8] 

implements a closure effect variant of the Paris law, 

termed here as ‘Newman’s Law’. The Paris law, and 

its variants are only applicable in the Paris region, 

Region II. 

 

2.1.1   Generalised Frost-Dugdale Law 
Recent observation has revealed, for constant 

amplitude loading, a near log-linear relationship 

between natural log of the crack length and the 

fatigue life for crack growth lengths as small as a 

few microns in the near-threshold region [10-15]. 

From these observations Barter et al. [10] presented 

a generalised Frost-Dugdale crack growth law to 

describe this relationship. 
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where C, and m are constants, and ∆Keff is the 

effective stress intensity factor. It has been shown in 

[10-15] that this relationship holds for the 7050-

T7451 aluminium alloy, in which C is 1.78E-10 and 

m is 3.36. Thus, confirming the implementation of 

the generalised Frost-Dugdale law for the 7050-

T7451 aluminium alloy. The fatigue crack growth 

structural analysis program [8] has been modified to 

implement this law. 

  

2.1 3D Structural Analysis 
The structural optimisation procedure proposed 

integrates geometrical modelling, structural analysis 

and optimization into one complete and automated 

computer-aided design process, termed an 

‘Integrated Design Optimisation System’. It 

determines the shape of the boundary of the three-

dimensional structural component under geometric 

constraints and structural conditions. The structural 

analysis, the Finite Element Alternating Method 

(FEAM) used in [18, 19] was implemented in this 

research, to avoid the finite element modelling of a 

complex three-dimensional cracks. FEAM only 

requires the location of the crack centres in its 

analysis. Therefore, 3D semi-elliptical cracks, as 

specified in [9, 18, 19] were placed all along the 

design surface of the model allowing for an effective 

modelling of the stress intensity factor variation 

around the boundary surface. Using these stress 

intensity factor solutions the fatigue crack growth 

structural analysis program then uses the appropriate 

crack growth law to calculate the fatigue life at the 

crack locations.  

 

2.2 Genetic Algorithm 
Genetic algorithms search from a randomly selected 

population of design points. Genetic algorithm 

searches many points simultaneously, searching 

many optimal peaks in parallel, thus illuminating the 

probability of finding false local optima. Genetic 

algorithms converge quickly to the optimum 

structure with a minimum effort, having to test only 

a small fraction of the design space to find out either 

the near optimum or the optimum solution. Genetic 

algorithm does not calculate the derivatives or use 

other auxiliary knowledge, but utilises the objective 

function information. An important aspect of genetic 

algorithm is the fact that probabilistic transition 

rules, i.e. probabilistic operators, are implemented to 

guide the search and not deterministic rules. These 

differences contribute to a genetic algorithm’s 

robustness and resulting advantage over other more 

commonly used techniques [1].  

Each design parameter is encoded into a particular 

code, i.e. binary finite-length string, and is termed 

the genotype. The concatenation of each genotype 

creates a binary finite-length string representation 

known as a chromosome. A single chromosome 

represents the total prescription for the construction 

of a particular design. The entire parameter sets is 

termed the population. Therefore, there are two main 

mechanisms that link genetic algorithm to solving a 

particular problem. The first mechanism is the 

method of encoding particular design solutions, 

represented by design parameters, to the problem on 

chromosomes and decoding the chromosome within 

limits of the parameters of the design solution. 

While the second mechanism is the evaluation of a 

function that measures the performance of a 

chromosome in the context of the problem. 

The fitness function is the link between the genetic 

algorithm and the problem to be solved [16]. Since 

each chromosome represents a parameter or 

parameter set for a particular design, the objective 

function of the problem is evaluated to find the 

response of the design parameters. The fitness 

function is converted from the objective function 

and produces a direct indication of performance for 

each chromosome to solve the optimisation problem 

subjected to the imposed constraints, which is 

termed fitness. This allows the population to be 

ranked according to fitness. A top-level description 

of a simple genetic algorithm is as follows. In the 
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initial phase, the population is heterogeneous, that is 

the randomly-generated chromosomes that are 

different. This randomly chosen population of 

chromosomes are copied based on their fitness by 

the operator known as reproduction. The 

chromosomes with the higher fitness values have a 

higher probability of being reproduced. Next the 

operators, crossover and mutation are implemented, 

in which bit manipulation, string copying and 

exchanging of partial strings update the 

chromosomes in the new improved population. This 

result in a new generation of chromosomes that are 

ready to be evaluated, selected and reproduced. This 

process is repeated, continuously improving the 

population, until the population becomes 

homogeneous. The definition of a population 

becoming homogeneous as defined by [1], is when 

the variance or standard deviation of the fitness 

becomes small, or the mean of the fitness 

approaches the maximum fitness of the population. 

I.e. when the population has converged, in which the 

population consists primarily of similar individuals. 

The next section briefly describes the three genetic 

algorithm operators. 

 

2.2.1   Genetic Algorithm Operators 

The reproduction of a new population begins with 

the selection procedure. The concept of reproduction 

is to create another population based on the fitness 

values of each chromosome. The selection process 

chooses chromosomes to be paired for reproduction, 

which will be used by the crossover and mutation 

operators. Chromosomes with a higher fitness value 

have a higher probability of being selected and 

contributing to one or more chromosomes in the 

next generation. There are a number of algorithmic 

implementations of this selection operator. The 

selection operators investigated include 

deterministic sampling, stochastic sampling with 

replacement, remainder stochastic sampling methods 

with (RSSWR) and without replacement and 

stochastic tournament procedure [16].  

The crossover operator exchanges bits between 

chromosomes selected by the selection operator 

according to the type of crossover algorithm. The 

selection operator selects two chromosomes from 

the population termed the parents from the 

population; next the crossover operator creates two 

children from the two parents and begins to create a 

new population. This process is repeated until the 

new population is filled. The crossover operator is 

assigned a probability of being performed with the 

genetic algorithm. The three common crossover 

algorithms investigated are single, double and 

uniform crossover. Single crossover involves the 

exchange of bits between two chromosomes from a 

randomly selected point, termed the crossover site, 

in the chromosome. The double crossover operator 

is similar to the single crossover operator, however 

there are two exchange points. The bits between the 

two parent chromosomes are exchanged between the 

two exchange points. The uniform crossover follows 

a different principle where, for each bit of the 

children chromosomes, it is randomly selected 

which parent contributes its bit value to a child. This 

leads to the random generation of a binary code 

template. The template indicates which parent will 

contribute to the first child, leaving the remaining 

parent bit to contribute to the second parent. The 

selection and crossover operators give genetic 

algorithms much of their power. 

The mutation operator involves the alteration of a 

randomly selected bit in a chromosome according to 

a probability value. Therefore the mutation operator 

goes through each bit in a chromosome, replacing 

each bit by a randomly selected bit if the probability 

of exchange is met. 

 

 

3   Numerical Analysis 
A simple benchmark problem of a ‘through-hole in a 

rectangular block under biaxial loading’ was 

considered. It consisted of a 10 mm thick 7050-

T7451 Aluminium alloy with a length and height of 

200 mm and a centrally located hole with a radius of 

10 mm. The block was subjected to a uniform 

biaxial tensile stress field of 100 MPa × 50 MPa as 

illustrated in Fig. 17b. Due to the symmetry of the 

model, only an eighth of the structure was modelled 

to increase the efficiency of the optimisation 

procedure (i.e. a quarter of the structure and half its 

thickness, illustrated by the model in Fig. 1b). The 

material properties used were Young’s modulus = 

71.7 GPa and Poisson’s ratio = 0.30. The objective 

of this problem was to obtain the optimal geometry 

of the centrally located through-hole, therefore the 

hole boundary was considered the design boundary. 

The optimisation domain constrained the shape of 

the hole within the lines KM and LN as illustrated in 

Fig. 1a.  

This genetic algorithm implementation relies on a 

simple coding of model design parameters which are 

the parameters of an equation describing the design 

boundary. In order to maintain the simplicity of the 

problem and reduce computational efficiency, the 

number of parameters was kept at a minimum.  The 

papers [17-21], have shown that the three-

dimensional stress optimised solution for this 

problem is approximately a 2:1 ellipse. Therefore, 
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the general polar equation of an ellipse was 

considered to describe the design boundary of the 

hole.  
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Figure 1. a) Schematic of the model. b) Meshed 

structure of the optimisation problem 

 

There are three parameters a, b and p, which 

represent the design parameters for the optimisation 

procedure. The parameters a and b represent the 

maximum size of the hole in the x and y directions in 

the X-Y plane. However, due to a geometric 

constraint in the x-direction of the problem (as 

illustrated in Fig. 17a), the parameter a was kept at a 

constant value of 10 mm. The parameter p described 

the curvature of the hole. This resulted in a two 

parameter (b and p) geometric representation of the 

hole. The chromosomes represented these 

parameters. Therefore two chromosomes of length 

30 were concatenated to form a chromosome of 

length 60. Each 30 bit chromosome (l=15) 

represented a parameter mapped to an un-signed 

integer ranging between 0 and 2
l
 [0,2

l
], to a 

specified interval [Smin, Smax]. In this case the first 30 

bits of the chromosome represented the b parameter 

ranging from 10 – 30, while the final 30 bits of the 

chromosome represented the p parameter ranging 

from 2 – 3. 

 

3.2 Fatigue Optimisation Results 
The objective function was to maximise the 

minimum fatigue life of the cracks along the design 

boundary. Therefore the evaluation function was the 

minimum fatigue life along the design boundary and 

the fitness function was the normalised value of the 

evaluation function for each particular population. 

Eq. (6) describes the fitness function implemented: 

max

)(
)(

eval

ieval
ifitness =       (6) 

For i = 1, population size. Where eval(i) represents 

evaluation value for chromosome (parameter set) i 

and evalmax is the maximum evaluation value in the 

current population. It was found that in this 

application the genetic parameters and operators 

indicated in Table 1 was sufficient. 

 

Table 1. Genetic algorithm parameters 

Probability of mutation 0.0333 

Probability of crossover 0.8 

Chromosome length 60 

Population size 30 

Number of generations 50 

Selection Operator RSSWR 

Crossover Operator Double 

 

Molent et al. [11] states that “the multi-scale nature 

of the Frost-Dugdale hypothesis is evident from the 

fact that it appears to apply to flaws with sizes that 

range from 0.01 mm to tens of mm’s”. Therefore 

following from Molent’s paper, the current research 

implemented a lower limit of 0.01 mm for the short 

crack category and a lower limit of 6 mm for the 

large crack category. The final crack size remained a 

constant 8 mm in all cases.  

Through the implementation of the generalised 

Frost-Dugdale law, the accurate prediction of the 

fatigue life is possible for short cracks as the 

generalised Frost-Dugdale law is applicable in the 

threshold region, while the Newman law does not 

predict well in this region. [17, 18] discovered that 

B

A

100 MPa 

50 MPa 
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for the case of a ‘through-hole in a plate’ problem, 

when the crack size is short (threshold region) a 

stress based solution (assuming no cracks) will 

produce an identical optimised geometry to a fatigue 

based solution. Ultimately, this solution will prove 

to be verification of the accuracy of the genetic 

algorithm 

 

3.2.1   Short Crack Category 

The results indicated in Table 3 illustrate that when 

the crack was short the fatigue optimal solution of 

the design boundary is approximately a 2:1 ellipse, 

which is similar to the stress based solution [17, 18, 

23]. These results are graphically illustrated in Fig. 

5. Table 3 indicates the minimum fatigue life for the 

3D genetic stress solution and 3D genetic fatigue 

solution. Table 4 illustrates that the results produced 

by several different optimisation techniques from 

[17, 18] produce a similar solution as the genetic 

algorithm. These results provide further evidence of 

the accuracy of the genetic algorithm in the 

application of a fatigue based finite element 

engineering structural optimisation problems.  

 

Table 3. Solutions of initial, stress and fatigue 

optimised structures 

 Initial Stress G. Frost-

Dugdale 

 b (mm) 10 19.88 21.26 

p 2 2.07 2.05 

Life (cycles) 991956 4967890 5345589 

 

Fig. 6 illustrates the convergence of the two design 

variables, b and p, to a near optimal solution of b = 

21.26 mm and p = 2.05. Fig. 7 illustrates the 

convergence of the fatigue life to the near optimal 

solution of 5345589 cycles. Each graph contains the 

maximum, minimum and average values for each 

generation and indicates the convergence of these 

values to a near optimum solution as the population 

becomes homogeneous. The graphs indicate a rapid 

convergence due to the fact that the solution space 

for this problem is relatively flat with a single peak, 

therefore once the genetic algorithm locates the peak 

the convergence occurs quick, thus highlighting the 

advantage of genetic algorithm. The mutation 

operator of the genetic algorithm can account for the 

bumps in the graph. After approximately 40 

generations the near optimal solution remains at a 

steady state. The solution space for this case is 

graphically illustrated in [17, 18]. 

 

 
Figure 5. 2-D representation of the initial, stress and 

fatigue algorithm solution for the short crack 

category. 

 

Table 4 – Comparison of genetic solution with other 

optimisation algorithms using the generalised Frost-

Dugdale law 

 Objective 

Functions 

Design 

Parameters 

Optimisation 

Algorithm 

Minimum 

Fatigue 

Life 

(Cycles) 

b 

(mm) 

p 

Gradient-less 3882000 20.65 2.00 

Gradient based 5311846 20.71 2.09 

Enumeration 4707360 20.70 2.00 

Genetic 5345589 21.26 2.05 

 

3.2.2   Large Crack Category 

A larger crack comparing two different crack growth 

laws was investigated. A fatigue based optimisation 

solution within the common Paris region (i.e. 

Region II) was considered. The common Paris-like 

law (Newman’s law) was implemented and 

compared to the solution produced by the 

generalised Frost-Dugdale law. Table 5 directly 

compares the optimal results produced by the 

genetic algorithm between each law and indicates 

that there is little difference between the solutions. 

Since Paris like laws have been proven to predict 

well in Region II of the standard crack growth 

curve, it can be assumed that the Newman law 

prediction is accurate. Therefore, the results indicate 

that when the crack length is large the generalised 

Frost-Dugdale law tends towards the Newman law 

solution. The near optimal geometry of the design 
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Figure 6. Convergence of design parameter b and p 

implementing the G. Frost Dugdale 
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Figure 7. Convergence of the fatigue life 

implementing G. Frost Dugdale 

 

boundary in a 2D X-Y plane for both crack growth 

laws is illustrated in Fig. 8. Fig. 8 also illustrates the 

initial and stress optimal solutions and indicates that 

the fatigue based optimal solutions produces a 

considerably lighter structure than both the initial 

and stress based solutions. This fact by itself 

illustrates the need for fatigue based analysis with an 

optimisation study. The convergence history for 

both laws indicates a rapid convergence similar to 

the stress and short crack results. Table 6 and 7 

illustrates that the results produced by several 

different optimisation techniques [17, 18] and 

indicate a similar solution as the genetic algorithm. 

These results provide further evidence of the 

accuracy of the genetic algorithm in the application 

of a fatigue based finite element engineering 

structural optimisation problems. 

 

Table 5 – Comparison between laws 

Categorised Crack Length 

Large 

 Newman G. Frost-Dugdale 

hole height (b) 23.20 23.60 

Curvature (p) 2.08 2.11 

Life (Cycles) 2506 2745 

 
Figure 8. 2-D representation of the Newman and 

generalised Frost-Dugdale solution 

 

Table 6– Comparison of genetic solution with other 

optimisation algorithms using G. Frost-Dugdale law. 

Algorithm Minimum Fatigue 

Life (Cycles) 

b 

(mm) 

p 

Gradient-less 2451 23.90 2.00 

Gradient based 2756 23.59 2.11 

Genetic 2745 23.60 2.11 

 

Table 7 – Comparison of genetic solution with other 

optimisation algorithms using the Newman law. 

Algorithm Minimum Fatigue 

Life (Cycles) 

b 

(mm) 

p 

Gradient-less 2271 23.78 2.00 

Gradient based 2411 22.87 2.09 

Genetic 2506 23.20 2.08 

 

 

4   Conclusion 
This paper has presented a genetic algorithm 

approach to fatigue based optimisation. This genetic 

algorithm has been validated for a numerical three-

dimensional structural optimisation study of a 7050-

T7451 aluminium structure.  

The fatigue optimised solution involving short 

cracks, the genetic solution produced was similar to 

the stress based solution which was expected. The 

implementation of the generalised Frost-Dugdale 

was required due to the fact that Paris-like laws do 

not predict accurately in any other region other than 

region II. This solution provided the necessary 

validation of the developed genetic algorithm. A 

fatigue based optimisation study with large cracks 

compared solutions between a Paris like law 
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(Newman’s Law) and the generalised Frost-Dugdale 

law. In general it should be stressed that solutions 

obtained are best thought of as “better”, or local 

optima, rather than true optimal solutions. The 

results indicated that the optimised geometry and 

predicted fatigue lives were similar, due to the fact 

that the crack size was within Region II. As with the 

other cases convergence to a near optimal solution 

was quick due to the flat solution space. The results 

generated from the genetic algorithm for the short 

and large crack case category produced similar 

results as the gradient-less, gradient based and 

enumeration algorithms, thus verifying the solutions. 

These findings offer the potential for the design of 

light weight structures, in which a fatigue based 

optimisation implementing a genetic algorithm 

provide a more robust methodology. Furthermore, it 

has the potential to be applied to structures with 

complex structural configurations with multiple 

optimum peaks taking into account crack 

propagation in the near-threshold 
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