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Abstract: We study two one-dimensional systems of hyperbolic conservation laws that are used to model the
multiphase flow in the process of secondary oil recovery. We compute approximate solutions for several examples
using a spacetime discontinuous Galerkin (SDG) method based on causal spacetime triangulations and a piecewise
constant Galerkin basis. Even though convergence of the SDG method was shown only in the case of strictly
hyperbolic genuinely nonlinear Temple class systems, numerical solutions presented in this paper show that the
SDG method could be effectively used for approximating solutions to more general problems.
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1 Introduction
After an underground source of oil is tapped, initially
oil flows out due to high pressure in the reservoir.
When this flow stops, usually there is still a large
amount of oil left in the reservoir and the method of
“secondary oil recovery” is used. This process as-
sumes that water and gas are injected into some wells
of the oil field to displace oil to the producing well.

We consider two models in one spatial dimension
in which oil, in a long tube of porous medium of rock
or sand, is displaced by water and gas pumped at one
end. We study systems of conservation laws, describ-
ing these two models, and we compute approximate
solutions to several initial value problems using a
spacetime discontinuous Galerkin method with causal
spacetime triangulations and the piecewise constant
Galerkin basis. For more details on multiphase flows
in porous media and computational techniques used in
petroleum engineering, see [1] by Chen, Huan & Ma
and references therein.

2 Definition of a spacetime discontin-
uous Galerkin method

In this paper we consider systems of conservation
laws in one spatial dimension

∂tu + ∂xf(u) = 0, (t, x) ∈ [0,∞) × R, (1)
with initial data

u(0, x) = u0(x), x ∈ R. (2)

Here, u : [0,∞) × R → D ⊆ R
n denotes densities

of conserved variables, f : D → R
n is the spatial

flux, and u0 : R → D is a function of bounded to-
tal variation. Let Df denote the gradient matrix of
f and let λi denote the i-th eigenvalue of Df . If
λ1(u), . . . , λn(u) are real for all u ∈ D, the system
is hyperbolic in the domain of conservation states D.
Moreover, if λ1(u), . . . , λn(u) are real and distinct for
all u ∈ D, the system is strictly hyperbolic in D. If
there are states u ∈ D, such that the matrix Df(u)
possesses complex eigenvalues, the system is either
elliptic of mixed hyperbolic-elliptic there.

Discontinuous Galerkin (DG) methods for con-
servation laws have been studied extensively during
the past two decades (for more details, see [3] by
Cockburn, Karniadakis & Shu). They are based on
the elementwise representation of the solution and en-
force the conservation law locally. The Runge-Kutta
DG methods use finite element discretizations of the
spatial domain and a Runge-Kutta technique to march
the solution in time (see [2] by Cockburn).

The spacetime discontinuous Galerkin (SDG)
method that we consider here is based on spacetime
triangulations of the spacetime domain [0,∞) × R.
The Galerkin basis consists of functions which are
polynomials of degree p ≥ 0 within each element,
while the values on adjacent elements are coupled
through the Godunov flux. The SDG method is
closely related to the method proposed by Lowrie in
[10], which is based on uniform layered triangula-
tions and which uses an approximation of the Go-
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dunov flux on certain element faces. The SDG method
was introduced by Palaniappan, Haber & Jerrard in
[12] with several numerical examples for scalar one-
dimensional hyperbolic conservation laws, including
the Buckley-Leverett equation which models a two-
phase flow in oil recovery. It was also shown numer-
ically that the SDG method is of the order p + 1, and
when p ≥ 1, certain slope and compact limiters are
used in order to avoid oscillations in the regions where
the solutions are discontinuous. Analysis of the SDG
method in the case p ≥ 1 is rather challenging due
to its spacetime format. As in [4, 5] by Jegdić and
Jegdić & Jerrard, where convergence of the method
was shown for certain strictly hyperbolic systems, we
assume p = 0, i.e., we assume that the Galerkin ba-
sis consists of piecewise constant functions. Given
a spacetime triangulation Th (h stands for the maxi-
mal diameter of a triangle in the considered triangula-
tion), we denote the corresponding Galerkin basis by
Ph. We also assume that the triangulations are causal,
meaning that for each edge Γ of an element T with
the outward unit spacetime normal ν = (νt, νx), we
require

either (1, λi(u)) · ν < 0 or (1, λi(u)) · ν > 0,

for every i ∈ {1, . . . , n} and all u ∈ D. Given an
edge Γ of an element T with the outward spacetime
normal ν, if (1, λi(u)) · ν is negative (positive) for all
i ∈ {1, . . . , n} and all u ∈ D, than the edge Γ is said
to be inflow (outflow) for the element T . Therefore,
the formulation of the causal spacetime discontinuous
Galerkin method is:

Given a causal spacetime triangulation Th of the
domain [0,∞) × R, find uh ∈ Ph such that

∫

∂T−

(u−

h , f(u−

h )) · ν dH1

+

∫

∂T+

(uh, f(uh)) · ν dH1 = 0,

holds on each element T ∈ Th, where ∂T− (∂T+)
stands for the inflow (outflow) part of the boundary
∂T , u−

h denotes the value of the approximate solution
along ∂T− which is computed on an adjacent mesh
element, and H1 denotes the one-dimensional Haus-
dorff measure.

In the case of strictly hyperbolic systems of con-
servation laws, we show in [4, 5] that given a causal
spacetime triangulation Th, if an approximation uh ∈
Ph exists, then uh satisfies certain discrete entropy in-
equalities. Also, in the case of strictly hyperbolic gen-
uinely nonlinear Temple class systems, we show that
given a sequence of causal spacetime triangulations
{Th}, the corresponding sequence {uh} of approx-
imations exists and is precompact in L1

loc([0,∞) ×

R; Rn). Moreover, we show that any limit of any con-
vergent subsequence of {uh} is a weak solution to the
initial value problem (1)-(2). SDG approximations for
Riemann problems with solutions containing singu-
lar and transitional shocks were computed in [6] by
Jegdić, showing that the SDG method could be suc-
cessfully used for approximating solutions to more
general problems. In this paper, we further confirm
this claim by studying systems of conservation laws
used in petroleum engineering.

3 Numerical simulations for an im-
miscible three-phase flow

The first model we study was considered by March-
esin & Plohr in [11]. They consider the idealized flow
of water, gas and oil in a homogeneous linear core,
neglecting gravity, compressibility, heterogeneity and
the mass transfer among the phases, they assume that
the displacement is immiscible and ignore fingering
effects. Governing equations are given by

∂tsw + ∂xfw(sw, sg) = Dw,
∂tsg + ∂xfg(sw, sg) = Dg,

(3)

where (t, x) ∈ [0,∞) × R, sw, sg : [0,∞) × R →
[0, 1] stand for water and gas saturations, respectively,
oil saturation is defined by so = 1 − sw − sg, and fw

and fg are fractional flow functions given, in terms of
relative permeability functions kw, kg and ko and the
fluid viscosities µw, µg and µo, by

fw(sw, sg) =
kw/µw

kw/µw + kg/µg + ko/µo

and

fg(sw, sg) =
kg/µg

kw/µw + kg/µg + ko/µo
.

The diffusion terms, Dw and Dg, represent the effect
of capillary pressure differences among fluids. As in
[11] we assume that each permeability function de-
pends only on its fluid saturation. More precisely,

kw = s2
w, kg = s2

g and ko = s2
o = (1−sw−sg)

2,

and µw = 0.5, µg = 0.3 and µo = 1. In this pa-
per, we also assume Dw = Dg = 0. For each state
S := (sw, sg) within the saturation triangle, defined
by D := {(sw, sg) : 0 ≤ sw, sg ≤ 1, sw + sg ≤ 1},
the Jacobian matrix

[

∂fw/∂sw ∂fw/∂sg

∂fg/∂sw ∂fg/∂sg

]
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has two real nonnegative eigenvalues, denoted by λ1

and λ2, implying that the system (3) is hyperbolic. We
graph (λ1−λ2)(sw, sg) for 0 ≤ sw, sg ≤ 1 in Figure 1
and we note that the two eigenvalues coincide for ex-
actly one point inside the saturation triangle D. This
point is called an “umbilic point”. On each edge of
the saturation triangle, the saturation of one of the flu-
ids is zero, and the flow is described by the Buckley-
Leverett equation for the two fluids.
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Figure 1: Graphs of λ1 − λ2.

In the two Riemann problems we consider next,
the right state corresponds to almost pure oil and the
left state corresponds to the mixture of water and gas

at the injection well. We compute the approximate so-
lutions for system (3) using the causal SDG method.
We consider a layered spacetime triangulation with
the time step ∆t = 0.002 and the diameter of the ele-
ments in spatial direction ∆x ∈ (0.01, 0.02).

Example 1. We consider Riemann data given by

S(0, x) :=

{

SL = (0.613, 0.387) if x < 0,
SR = (0.05, 0.15) if x ≥ 0,

which models injection of water (61.3%) and gas
(38.7%). The saturation of oil changes from 0% at
the left side of the core to 80% at the right side of
core. The approximate saturations of water, gas and
oil at time t = 2 are depicted in Figure 2. The so-
lution has a classical wave structure, consisting of a
slow and a fast wave groups. The slow wave group
consists of a “compound wave” (a rarefaction wave
and an adjacent shock wave) connecting the left state
to an intermediate state, and the fast wave group is
represented by a Buckley-Leverett shock (i.e., an oil
bank) from this intermediate state to the right state.

Example 2. The Riemann initial data is given by

S(0, x) :=

{

SL = (0.721, 0.279) if x < 0,
SR = (0.05, 0.15) if x ≥ 0,

which models injection of water (72.1%) and gas
(27.9%). Again, the saturation of oil is 0% at the
left side and 80% at the right side of core. The ap-
proximate saturations of water, gas and oil at time
t = 2 are plotted in Figure 3. In this case the solution
consists of three wave groups. Again, the slow wave
group consists of a rarefaction and an adjacent shock
and the fast wave group is represented by a Buckley-
Leverett shock. However, between the slow and the
fast wave groups, there is a new kind of shock, called
a “transitional shock”.

4 Numerical simulations for a two-
phase first-contact miscible flow

The second model we consider was studied by Juanes
& Lie in [7, 8] using a front-tracking algorithm. The
main assumptions are: (a) it is a three component
model consisting of water, gas and oil, (2) the in-
jection gas, called “solvent”, and the resident oil mix
and form a hydrocarbon phase h which is immiscible
with water, (3) the fluids are incompressible, and (4)
gravity, capillary forces and viscous fingering are ne-
glected. Hence, this is a two-phase model consisting
of water and a hydrocarbon phase. For front-tracking
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Figure 2: Approximate saturations at t = 2.
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Figure 3: Approximate saturations at t = 2.

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007     42



simulations of an immiscible three-phase flow, we re-
fer to [9] by Lie & Juanes. Let sw and sh denote satu-
rations of water and the hydrocarbon phase (sw+sh =
1), and let χo and χg denote the mass fractions of oil
and gas in the hydrocarbon phase (χo+χg = 1). Then
the governing equations are given by

∂tsw + vT ∂xfw = 0,
∂t((1 − sw)χg) + vT ∂x((1 − fw)χg) = 0,

where fw is a fractional flow function given by

fw =
kw/µw

kw/µw + kh/µh
,

kw and kh are relative permeability functions, µw and
µh denote viscosities, and vT = vw+vh is the total ve-
locity. After rescaling of the time variable to eliminate
vT , and using the notation s := sw, c := (1 − sw)χg,
χ := χg, f := fw and g := (1 − fw)χg , we obtain

∂ts + ∂xf(s, c) = 0,
∂tc + ∂xg(s, c) = 0,

(4)

where s and c stand for water saturation and solvent
concentration, respectively, relative permeabilities are
specified by

kw =

(

s − swc

1 − swc

)2

if s < swc,

and kw = 0, otherwise, and

kh = 0.1
1 − s − shc

1 − shc
+ 0.9

(

1 − s − shc

1 − shc

)2

if 1 − s > shc, and kh(s) = 0, otherwise. Further,
swc = shc = 0.2, and viscosities are given by µw = 1,
µg = 0.4, µo = 4 and

µh(χ) =

(

1 − χ

µ
1/4
o

+
χ

µ
1/4
g

)

−4

.

For each state U := (s, c) within the saturation trian-
gle D := {(s, c) : 0 ≤ s, c ≤ 1, s + c ≤ 1}, we
compute the eigenvalues λ1 and λ2 of the Jacobian
matrix

[

∂f/∂s ∂f/∂c
∂g/∂s ∂g/∂c

]

.

We depict the graphs of |λ1 − λ2| in Figure 4. We
note that the system is hyperbolic, but not everywhere
strictly hyperbolic. The two eigenvalues λ1 and λ2 co-
incide along a curve (called a “transition curve”, since
λ1 < λ2 on the left, and λ1 > λ2 on the right of
this curve). We notice this curve for 0.2 ≤ s ≤ 0.8
and 0 ≤ c ≤ 1, and we also depict a closer look for
0.2 ≤ s ≤ 0.8 and 0 ≤ c ≤ 0.5.
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Figure 4: Graphs of |λ1 − λ2|.

Example 3. The Riemann initial data we consider for
system (4) is given by

U(0, x) :=

{

(0.8, 0) if x < 0.5,
(0.2, 0.7) if x ≥ 0.5.

We compute the approximate solution at time t = 2
using the SDG method and depict the plot for the sat-
uration of water in Figure 5.
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Figure 5: Saturation of water at t = 2.

5 Conclusion

We note again that convergence of the SDG method
presented in §2 was so far proved only for a special
class of strictly hyperbolic systems (Temple systems)
using their special geometric properties. In this pa-
per we consider two hyperbolic, but not everywhere
strictly hyperbolic, systems of conservation laws that
are used to model a process of secondary oil recovery.
The SDG solutions for the above examples are consis-
tent with analytical solutions in [11] (Examples 1 and
2) and front-tracking approximations in [8] (Example
3), indicating that the SDG method could be success-
fully used for approximating solutions to more general
systems of hyperbolic conservation laws.
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