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Abstract: In this paper we introduce a new modeling paradigm for developing decision process representation
associating to any Decision Process Petri net (DPPN) a Kripke structure (KS). The principal characteristics of this
model is its ability to represent and analyze the shortest-path properties of a decision process. In this sense, we
use a Lypunov-like function as a state-value function for path planning, obtaining as a result new characterizations
for �nal decision points. We show that the dynamics of the DPPN can be captured by a KS and, some dynamic
properties of a DPPN can be stated in temporal logics. The temporal logic is constructed according to the Lypunov-
like function syntax and semantics. Moreover, we consider some results and discuss possible directions for further
research.

Key�Words: Modal Logic, Decision Process, Lyapunov Theory

1 Introduction

The analysis, design and development of large sys-
tems is a very dif�cult task. Especially, systems con-
sisting of concurrent processes involving continuous-
timeMarkov process as well as it associated stochastic
process. In this sense, the need to avoid design errors
becomes more and more important. The fact is that the
size of the systems is rapidly growing. If we suppose
that the number of errors in a system is proportional
to its size, it becomes clear that the larger the system
is, more problematic will be its design, and less will
be the probability that it will correctly work.

For this reason, the application of formal meth-
ods in the design of decision process systems is more
and more frequently discussed. There are some ap-
proaches that are independent of the kind of system
that is to be veri�ed. However, in most cases, the kind
of system determines the kinds of properties to be ver-
i�ed, and this in turn makes one or another veri�ca-
tion formalism more or less suited. We will consider
different ways how formal methods can be applied to
guide the design of complex systems. In particular,
we distinguish between two main approaches: Deci-
sion Process Petri Nets and Temporal logics.

The Decision Process Petri Nets (DPPN) is a

powerful modeling framework, which combines ad-
vantages of the place-transitions Petri Nets (PN) with
the expressive power of the decision process ([5], [6]).
It extends the place-transitions Petri net theoretic ap-
proach including the Markov decision processes, us-
ing a utility function as a tool for trajectory plan-
ning. On the one hand, place-transitions Petri nets
are used for process representation, taking advantage
of the well-known properties of this approach namely,
formal semantic and graphical display, giving a spe-
ci�c and unambiguous description of the behavior of
the process. On the other hand, Markov decision
processes have become a standard model for decision
theoretic planning problems, having as key drawbacks
the exponential nature of the dynamic policy construc-
tion algorithms. Although, both perspectives are in-
tegrated in a DPPN they work in different execution
levels. That is, the operation of the place-transitions
Petri net is not modi�ed and the utility function is
used exclusively for establishing a trajectory tracking
in the place-transitions Petri net. The DPPN is able to
express the liveness, safety, persistence and fairness
properties of the PN.

Temporal logics are usually de�ned in terms of
Kripke structures (KS). A Kripke structure can be
represented by a bipartite graph having two classes of
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nodes, and no edges can relate nodes from the same
set. The reachable states of the system are represented
by places nodes and the action of the system as tran-
sitions nodes. It also contains a labeling of the states
of the system with properties that hold in each state.
Therefore, the dynamics of a discrete system can be
captured by a Kripke structure and, some dynamic
properties of a discrete system can be stated in tem-
poral logics. In this sense, [?], [8] have investigated
the temporal logics language corresponding to �nte-
stateautomaton and place-transitions Petri Nets.

Kripke structures are closely related to Decision
Process Petri nets, however there are fundamental dif-
ferences. A DPPN represents systems that understand
tokens as inputs and respond to these by performing
actions in form of state transitions leaded by a utility
function. Nevertheless, a Kripke structure is obtained
just for a system's description, it exempli�es all the
possible situations that can occur in performing the
actions of a system. This means that a Kripke struc-
ture has no possibility to give reasons for explaining
why the system is in a speci�c state, or it moves to a
different state. In addition, for complicated systems
speci�cations expressing the speci�cation directly as
a DPPN can be too complicated. This is one of the
reasons modal logics are more widely used as a spec-
i�cation formalisms than Petri nets.

The motivation for this work is that the existing
logics for decision process do not have the right ex-
pressive power to deal with decision making. On the
other side, decision making play a fundamental role
when modeling applications related with game theory.

The aim of this paper is to associate to any De-
cision Process Petri net (DPPN) a Kripke structure
(KS). We extended the logic Kripke structure in order
to specify steady-state, transient and path-based mea-
sures extended with a Lyapunov-like function, which
is a state-value function.

This approach allows for the speci�cation of new
measures that have not yet been addressed in the per-
formability literature. In this sense, a Lyapunov-like
functions can be used as state-value functions and op-
timal cost-to-target functions. As a result of calculat-
ing a Lyapunov-like function, a discrete vector �eld
can be built for tracking the actions over the net. Each
applied optimal action produces a monotonic progress
(of the optimal cost-to-target value) toward an equi-
librium point. In this sense, if the function decreases
with each action taken, then it approaches an in�-
mum/minimum (converges asymptotically or reaches
a constant).

The principal characteristics of this model is its
ability to represent and analyze the shortest-path prop-
erties of a decision process. In this sense, we use
a Lypunov-like function as a state-value function for

path planning, obtaining as a result new characteriza-
tions for �nal decision points. We show that the dy-
namics of the DPPN can be captured by a KS and,
some dynamic properties of a DPPN can be stated in
temporal logics. The temporal logic is constructed ac-
cording to the Lypunov-like function syntax and se-
mantics. Moreover, we consider some results and dis-
cuss possible directions for further research.

In this paper we introduce a new modeling para-
digm for developing decision process representation.
It extends the Kripke structure theoretic approach.
KSs are used for process representation taking ad-
vantage of the formal syntax and semantics, and the
graphical display. Markov decision process is utilized
as a tool for path planning via a Lyapunov-like func-
tion. As result, we obtain new characterizations for
�nal decision points (optimum point). We propose a
temporal logic called Decision Process Logic (DPL)
constructed according to a state-value function syntax
and semantics for DK allowing the speci�cation of
new properties that have not yet been addressed in the
literature.

The rest of the paper is organized as follows. The
next section presents the formulation of the problem
including the decision Kripke structure and the pro-
posed Decision Process Logic. Finally, some conclud-
ing remarks and future work are provided in Section
3.

2 Formulation

The aim of this section is to associate to any Decision
Process Petri net ([5], [6]) a Kripke structure (KS).

De�nition 1 Let DPPN = fP;Q; F;W;M0; �; Ug
be a Decision Process Petri net. The Kripke structure
of a DPPN is a tuple KS = (S; s0; R;M0; L; �; U)
where:

� S is a �nite set of states,

� s0 is the initial state,

� R is the set of triples (s; r; s0) such that the tran-
sition r 2 R is enabled at state s and s0 is is
obtained by executing r at state s,

� L : S ! 2� is a function which associates with
each state a set of atomic propositions �.

The Kripke structure KS =
(S; s0; R;M0; L; �; U) satis�es recursively the
following properties:

1. M0 2 S
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2. IfM 2 S andM [qiM 0 such thatM 0 = U(M)
thenM 0 2 S and (M;M 0) 2 R

3. S and R have no other elements

The executions of the KS are in�nite sequences
M0M1M2::: of states in S leaded by a state-
value function U where M0 is the initial state and
(Mi;Mi+1) 2 R holds for i � 0.

We have clear that the existing approaches for de-
cision process and Kripke structure have characteris-
tics in common. The goal now is to integrate these
two approaches even more introducing a logic (linear
temporal logic) to reason about decision process. Our
approach includes a Lyapunov (steady-state) operator
S for a path ([1], [2], [3], [4], [7]). The steady-state
operator is related with the trajectory-tracking value
of residing in a particular set of states.

Formulas are built from the set of atomic proposi-
tion � and are closed under the application of Boolean
connectives, the unary temporal connective X (next),
the binary temporal connective U (until) and, the Lya-
punov operator S satisfying the following properties:

1. the atomic proposition a 2 � is a formula,

2. if ' and  are formulas then (:') and (' ^  )
are formulas,

3. if ' is a formula then S' is a formula,

4. if ' and  are formulas then X' and  U' are
formulas.

Boolean connectives are derived in the usual way,
i.e. false = :true, ' _  = :(:' ^ : ), and
' =)  = :' _  .

Formulas keep the usual interpretation, with the
added understanding that: the formula S' asserts that
the state-value function U for the paths that satisfy '
approaches to an in�mum or attains the minimum, i.e.
U(s4) = 0 or U(s4) = C .

The logic is interpreted under computations. A
computation is a �nite or in�nite sequence � =
K(0)K(1)::: of sets of atomic proposition of �. In-
tuitively, K(i) is the set of propositions that hold in
the computation after i steps. A formula  is true in a
computation � and a point i, i.e. �; i j=  , under the
following conditions:

1. �; i j= a for a 2 � iff a 2 K(i):

2. �; i j= ' ^  iff �; i j= ' and �; i j=  

3. �; i j= : iff not �; i j=  

4. �; i j= X iff there exists a point i + 1 in the
computation and �; i+ 1 j=  

5. �; i j= 'U iff for some j � i, we have �; j j=
 and for all l, i � l < j, we have �; l j= '

6. �; i j= S iff there exists a point j � i in the
computation such that U(j) ! 0 (approaches to
an in�mum) or U(j) = C (the minimum is at-
tained).

Interpretation. A KS represents a set of allow-
able action sequence. In particular, represents a set of
action sequence that starts in an initial state and fol-
lows the transitions conditions obeying a state-value
function U . At run-time, a KS can interpreted in the
following manner. At every discrete time step, a de-
cision maker is at one of the states, and it selects the
next action to take. ....?

A path is an ordered sequence si; si+1; ::: of states
generated byU over the Kripke structureKS such that
si+1 = U(si) and (si; si+1) 2 R holds for i � 0.

Property 2 The relation �U� S � S de�ned by
si �U si+1 =) U(si+1) � U(si), is an ordering
on KS, i.e. its re�exive, transitive and antisymmetric.

Proof. If we consider �U be the equivalence re-
lation on S induced by U as 8s; t 2 S : s �U
t () U(s) = U(t). Then the equivalence class
(S= �U ) = f�(s)js 2 Sg is a poset isomorphic to
a subset of R. Thus, S= �U is linearly ordered and,
consequently, it is a lattice. The structure S= �U is
indeed trivial: all elements in S giving the same value
underU are identi�ed in this quotient set. On the other
hand, let us consider the relation �Uas 8s; t 2 S :
s �U t () U(t) � U(s):This relation is re�exive
and transitive, and it is antisymmetric because U is a
Lyapunov-like function strictly decreasing and there-
fore it is one-to-one.

The sequence si; si+1; ::: of states of a path over
the Kripke structure KS are functions � : N ! S.
We use �i to denote the suf�x of the path � =
s0; s1; ::: starting at the index i; such that �i =
si; si+1; ::: We use �(i) to denote the ith state of
the path �. The set of paths starting from a given
state s over the Kripke structure KS is �(s) =�
�j�(0) = s ^ 8i 2 N : (�(i); �(i+1)) 2 R

	
. Conse-

quently, the set of all paths over S is �(S) =S
s2S �(s):
A path sequence s0; s1; ::: of states over the

Kripke structure KS is called fair if for every
set of states Fk 2 F (0 � k < jF j) there are
in�nitely many states �(i) in the path that be-
long to Fk. The set of fairness paths starting from
a given state s over the Kripke structureKS is�(s) =�
� 2 �(s)j8Fk 2 F; 8i 2 N 9j 2 N : �(i+j) 2 Fk

	
:

Consequently, the set of all fair paths over S
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is �(S) =
S
s2S �(s): Clearly, we have that

�(s) � �(s): For F = ? the requirement that every
set Fk is visited in�nitely often is vacuously true,
and thus any path is fair. From now on, we will
assume all formulas to be interpreted over fair paths.
Therefore, the Kripke structure of aDPPN is a tuple
KS = (S; s0; R;M0; L; F; �; U) where F � 2S is a
set of fairness constraints.

A run � is a sequence s0; s1; ::: of states generated
by U over the Kripke structure KS such (si; si+1) 2
R holds for i � 0. The language of KS is de�ned as
L(KS) = f� 2 � j � has a run �=s0; ::: in Sg.

Remark 3 In Petri nets the states of the system are
the markings. The atomic propositions are predicates
on the possible markings of the net (having usually
one atomic proposition per place). Predicates are of
the form '(p;m) where p is a place of the net and
m 2 N+, and it is read `the number of token of p is
greater then or equal to c', holding if at marking M
we have that M(p) � m. The markings satisfying
the atomic proposition p are those that put a token
in p. In a Petri nets a computation is a sequence of
sets of places. As a consequence, a computation is
a sequence of markings. It is important to note that
computations are the sequences of markings obtained
from the runs � leaded by the state-value functionU of
the Petri net by removing the intermediate transitions.

De�nition 4 A Petri net satis�es a formula ' if there
is a run � leaded by the state-value function U that
satis�es '.

Remark 5 Intuitively, a Lyapunov-like function can
be considered as state-value function. In our case,
an optimal discrete problem, the trajectory-tracking
values are calculated using a discrete Lyapunov-like
function. Every time a discrete vector �eld of possi-
ble transitions is calculated over the decision process.
Each applied optimal transition (selected via some
`criterion', e.g. min(�) ) decreases the optimal value,
ensuring that the optimal course of action is fol-
lowed and establishing a preference relation. In this
sense, the criterion change the asymptotic behavior of
the Lyapunov-like function by an optimal trajectory-
tracking value. It is important to note, that the process
�nished when the equilibrium point is reached. This
point determines a signi�cant difference with the Bell-
man's equation.

Then, we can conclude the following theorem of
existence.

Theorem 6 Let KS = (S; s0; R;M0; L; F; �; U) be
a Kripke structure. Then, if there is a run � =

s0; s1; :::sn leaded by the state-value function U that
satis�es ' then the KS is bounded by the state sn of
the system.

Proof. Let us suppose that the KS is not �nite. Then
sn is never reached. Therefore, it is possible to evolve
in time n and to reduce the trajectory function value
over sn. However, the Lyapunov-like trajectory func-
tion converges to zero when n ! 1 (or reached a
minimum) i.e., Un = 0 or Un = C.

Property 7 Every Kripke structure KS =
(S; s0; R;M0; L; F; �; U) is bounded by a state
sn.

Proof. Straightforward by the previous theorem.

De�nition 8 An equilibrium (steady-state)
point with respect a Kripke structure KS =
(S; s0; R;M0; L; F; �; U) is the last state of the net.

Remark 9 An equilibrium point with respect
a Decision Process Petri net DPPN =
fP;Q; F;W;M0; �; Ug is a place p� 2 P such
thatMl(p

�) = C <1, 8l � k, and p� is a sink.

De�nition 10 A �nal decision state sf 2 S
with respect a Kripke structure KS =
(S; s0; R;M0; L; F; �; U) is a state s 2 S where
the in�mum is asymptotically approached (or the
minimum is attained), i.e. U(s) = 0 or U(s) = C.

De�nition 11 An optimum state s4 2 S with respect
a Kripke structureKS = (S; s0; R;M0; L; F; �; U) is
a �nal decision state sf 2 S where the best choice is
selected `according to some criteria'.

Corollary 12 Every Kripke structure KS =
(S; s0; R;M0; L; F; �; U) has a �nal decision state.

It easy to show the correspondence between a
steady-state, �nal decision state and optimum state
([5], [6]).

(s; s0) 2 R is a total transition relation that means
that the state s0 can be reached from the state s, i.e., it
is a possible successor state of s. There may be more
than one successor state, and usually conditions over
the transitions (probabilities, etc.) are given to select
a particular next state.

For the semantics of our logics, we must reason
about successor and predecessor states of a particular
state. These are formally de�ned as given below.

For any s 2 S let the successors of s be: s0 2
suc(s) iff s 6= s0; (s; s0) 2 R and 8s� : (s; s�) 2
R _ (s�; s0) 2 R =) (s� = s0) _ (s� = s). For
any s 2 S let the predecessor of s be: s0 2 pre(s) iff
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s0 6= s; (s0; s) 2 R and 8s� : (s0; s�) 2 R _ (s�; s) 2
R =) (s� = s) _ (s� = s0).

We assume that every state has an out degree in
KS, i.e. a number of immediate successors. The max-
imal elements are those with no predecessors, i.e. state
with null inner degree in KS. The minimal elements
are those with no successors, i.e. state with null outer
degree in KS.

Let us de�ne the upper distance d+ as follows:

d+(s; s0) = 1 () s0 2 suc(s)
d+(s; s0) = 1 + r ()

9s� : d+(s; s�) = r&d+(s�; s0) = 1

Similarly, the lower distance d� is

d�(s; s0) = 1 () s0 2 pre(s)
d�(s; s0) = 1 + r ()

9s� : d�(s; s�) = r&d�(s�; s0) = 1

Thus d+(s; s0) = d�(s0; s).
The upper height of a node s is h+(s) =

Maxfd+(s0; s)js0 is maximalg: The lower height of
a node s is h�(s) =Maxfd�(s0; s)js0 is minimalg.

We mainly use the above de�nitions for the tran-
sition relations of Kripke structures to determine suc-
cessor and predecessor states.

We say that a state s0 2 S is reachable from a
state s 2 S; rs(s; s0), if there exists a path � 2 �(s)
of states of the Kripke structure KS leading from s to
s0 by U , i:e:

rs(s; s0) = f�j�(0) = s ^ �(n) = s0 ^ 8i 2 N :

si+1 = U(si) ^ (�(i); �(i+1)) 2 Rg:

3 Conclusions and future work

We presented an approach for decision Kripke struc-
tures. It contribute to bridging the gap between classi-
cal Kripke structures and the decision process. We
have proposed Decision Process Logic for property
speci�cation of Decision Kripke structures. The ex-
pressive power and the mathematical formality of the
Decision Process Logic is also useful for capturing the
dynamics and describing the dynamic properties of a
DPPN. We have implemented a model checking sys-
temwhich is optimized by use of a Lyapunov-like util-
ity function for path tracking. In this sense, there are
a number of questions relating classical model check-
ing that may in the future be addressed satisfactorily
within this framework. We are currently working in
the generalization to game theory.
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