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Abstract: -Attention is focused on continuous-space shift-invariant systems with continuous system maps and inputs and
outputs that are elements of L∞(IRd). It is shown that infinite superposition can fail in this important setting. It is also
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1 Introduction

One can give a very long list of books – many of them
basically very good books – (see, for example, [1, pp. 268–
269], [2, p. 53], [3, p. 67], [4, p. 176 ]) in which superpo-
sition is said to hold in the case of any linear systemwith an
excitation that can bewritten as a sumof a countably infinite
number of excitations. As is well known, this conclusion
– which has been taught to decades of students in several
fields – plays a central role in textbook material concern-
ing the origins of both discrete-time and continuous-time
convolution representations. In [5], and also in the brief
note [6], attention is directed to the fact that the conclusion
is not correct. One consequence of the oversight is that
the usual representation for linear discrete-time systems
has had to be corrected by adding an additional term [5].1
In [6], in the setting of linear spaces with metrics and a
standard definition of convergence, a simple criterion is
given for (infinite) superposition to hold. A discrete-space
example is given in [6] to illustrate that superposition can
fail. However, the linear system map in the example is not
continuous, and it is defined on only a certain unusual input
space. In addition, the simple criterion given for superposi-
tion to hold involves a strong assunption on the convergence
of the input sum representation of the input. With that as-
sumption, superposition can fail only for system maps that
lack continuity.
Here attention is focused on shift-invariant continuous-

space systems with continuous system maps. Inputs and
outputs are elements of the familiar space L∞(IRd) of
Lebesguemeasurable complex-valued functions definedon
IRd, where d is any positive integer. We show that super-
position can fail in this important setting. Also given – and
again in contrast with what is said in texts on linear systems

1As mentioned in [5], this writer does not claim that cases in
which the extra term is nonzero are necessarily of importance in
applications, but he does feel that the existence of these cases
illustrates that the analytical ideas in the books are flawed.

– is a related result showing that continuous shift-invariant
linear mappings need not commute with the operation of
integration (even when the two composite operations are
well defined).2 Our main results are Theorems 1 and 2
of the following section. The section contains in addition
results that provide sufficient conditions under which com-
mutativity is valid.

2 On Superposition and Commutativity

2.1 Preliminaries
In the signal-processing literature, x(α) typically de-

notes a function. In the following we distinguish between
a function x and x(α), the latter meaning the value of x at
the point (or time) α. Sometimes a function x is denoted
by x(·), and also we use Gx to mean G(x). This notation
is often useful in studies of systems in which signals are
transformed into other signals.
We use ‖ · ‖d to stand for a norm on IRd. As in Section 1,

L∞(IRd) denotes the linear space of Lebesgue measurable
complex-valued functions defined on IRd, where d is any
positive integer. We viewL∞(IRd) as a normed space with
the norm given by

‖x‖∞ = sup
α∈ IRd

|x(α)|. (1)

All integrals in this section and in the Appendix are
Lebesgue integrals. For 1 ≤ p < ∞, Lp(IRd) stands
for the usual normed linear space space of pth power in-
tegrable functions defined on IRd. BL1(IRd) denotes the
linear space of bounded L1(IRd) functions.

2For related material motivated by the fact that there exist
continuous shift-invariant linear maps whose input-output be-
havior is not determined by its impulse response, see [7] and
[8].
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2.2 Lack of Infinite Superposition

Our main result is the following.

Theorem 1 : There are elements x and x1, x2, . . . in
L∞(IRd), and a continuous linear shift-invariant map G
from L∞(IRd) into itself, such that

(i) x =
∑∞

n=1 xn in the sense of pointwise convergence.

(ii)
∑∞

n=1 Gxn converges in L∞(IRd), and we have

Gx $=
∞∑

n=1

Gxn.

Proof:
Let x be any element of L∞(IRd) such that

lim‖α‖d→∞ x(α) = c, in which c is a nonzero number,
and define xn by xn(α) = x(α) for n − 1 ≤ ‖α ‖d < n,
and zero otherwise, for each positive integer n. It is clear
that x =

∑∞
n=1 xn in the sense of pointwise convergence.

Wewill show that there is a continuous linear shift-invariant
map G from L∞(IRd) into itself, such that (ii) holds, with
in fact each Gxn the zero function in L∞(IRd). We will
use the following lemma.
Lemma 1 : There is a continuous linear shift-invariant
map H from L∞(IRd) into itself such that

(a) H takes every element ofBL1(IRd) into the zero func-
tion in L∞(IRd).

(b) (Hy)(α) = ζ for all α ∈ IRd and each y ∈ L∞(IRd)
with lim‖α‖d→∞ y(α) = ζ, in which ζ is an arbitrary
complex number.

Lemma 1 is all but stated in [9]. For the reader’s conve-
nience, a proof is given in the Appendix.
SelectG to be anyH of the kind described in the lemma,

and observe that G satisfies (ii) because of the assumed
limit property of x, and the fact that each xn belongs to
BL1(IRd). This proves the theorem.
The fact that the series

∑∞
n=1 xn of the theorem is not

required to converge inL∞(IRd) is crucial, in that (see [6])∑∞
n=1 Gxn converges in L∞(IRd), with

Gx =
∞∑

n=1

Gxn

when the series converges in L∞(IRd) (and G is as in-
dicated). Also, a result entirely analogous to Theorem 1
holds in the corresponding discrete-space setting. Specifi-
cally, direct modifications of the proof show that Theorem
1 holds if L∞(IRd) is replaced with the usual normed lin-
ear space #∞(Zd) of complex-valued functions defined on
Zd, where Z denotes the integers. The theorem holds also
if L∞(IRd) is replaced with its corresponding real-valued
space, and similarly for #∞(Zd).

2.3 Lack of Commutativity

The tools used to prove Theorem 1 also yield the follow-
ing.

Theorem 2 : Let a be any element of BL1(IRd) such
that a has a nonzero integral. Then there is an element x
in L∞(IRd) and a continuous linear shift-invariant mapH
from L∞(IRd) into itself such thatH mapsBL1(IRd) into
itself and

H

∫

IRd

a(· − β)x(β) dβ $=
∫

IRd

Ha(· − β)x(β) dβ.

Proof:
Choose x to to be an element of L∞(IRd) with

lim‖α‖d→∞ x(α) = c, in which c is a nonzero number,
and notice that the theorem follows at once from Lemma 1
and Proposition 1 (in the Appendix). Here too, we arrive
at a case in which the right side, but not the left side, is the
zero function in L∞(IRd).
The theorem holds also if L∞(IRd) is replaced with

its corresponding real-valued space. Also, a result en-
tirely analogous to Theorem 2 holds in the corresponding
discrete-space setting in which L∞(IRd) and BL1(IRd)
are replaced with the familiar spaces #∞(Zd) and #1(Zd),
respectively, and the integrals are replaced with the analo-
gous infinite sums.3

2.4 Sufficient Conditions for Commutativity

We close Section 2 by stating two results that provide
conditions under which a linear map does commute with
integration:

Theorem 3: Suppose that1 ≤ p < ∞, and thatM is a lin-
ear shift-invariant map whose domain includes Lp(IRd) ∪
L1(IRd). Assume thatM is defined on Lp(IRd)∪L1(IRd)
such that the restriction of M to Lp(IRd) is a continuous
map into Lp(IRd), and the restriction of M to L1(IRd) is
a continuous map into L1(IRd). Let x ∈ Lp(IRd), and let
g ∈ L1(IRd). Then, with # the element of Lp(IRd) given
by

# =
∫

IRd

g(· − β)x(β) dβ

we have

M# =
∫

IRd

(Mg)(· − β)x(β) dβ.

Theorem 3 is an extension [10] of Lemma 21.2.2 of [14,
pp. 568] where the p = 1 case is given. Although not
stated in [14], the proof given of the lemma yields also the
following.

Theorem 4: Suppose that 1 ≤ p < ∞, and that M is a
continuous linear shift-invariant map ofLp(IRd) into itself.

3A classical observation related in a general sense to Theo-
rem 2 is that differentation under the integral sign is not always
valid.
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Let g ∈ Lp(IRd) and let x ∈ L1(IRd). Then, with # the
element of Lp(IRd) given by

# =
∫

IRd

g(· − β)x(β) dβ

we have

M# =
∫

IRd

(Mg)(· − β)x(β) dβ.

2.5 Conclusion

It is shown that infinite superposition can fail in a cer-
tain important setting. It is also shown that continuous
shift-invariant linear mappings need not commute with the
operation of integration (even when the two composite op-
erations are well defined).

3 Appendix

3.1. Proof of Lemma 1

We use the following three propositions, in which F
denotes the map defined on L∞(IRd) by

(Fy)(α) =
∫

IRd

f(α− β)y(β) dβ, α ∈ IRd

where f ∈ BL1(IRd)with unit integral. Also, C stands for
the normed linear space of bounded uniformly-continuous
complex-valued functions defined on IRd, with the norm
described by (1).4

Proposition 1: If y ∈ L∞(IRd) satisfies

lim
‖α‖d→∞

y(α) = ζ for some ζ,

then
lim

‖α‖d→∞
(Fy)(α) = ζ.

Proof of Proposition 1:
Suppose that y is as indicated. We have

(Fy)(α) =
∫

IRd

f(α− β)y(β) dβ = ζ

∫

IRd

f(β) dβ

+
∫

IRd

f(α− β)[y(β) − ζ] dβ

for each α. Consider the last integral, and let any ε > 0 be
given. Choose a positive c1 so that

sup
‖α‖d > c1

|y(α) − ζ|
∫

IRd

|f(β)| dβ < ε/2

and then, using the hypothesis that f ∈ L1(IRd), select a
c2 > 0 for which

sup
α∈ IRd

|y(α) − ζ|
∫

‖β‖d ≤ c1

|f(α− β)| dβ < ε/2

4A complex-valued function x defined on IRd is uniformly
continuous if for each ε > 0 there is a δ > 0 for which |x(α1)−
x(α2)| < ε whenever ‖α1 − α2‖d < δ.

for ‖α‖d > c2. Observe that for ‖α‖d > c2,
∣∣∣∣
∫

IRd

f(α− β)[y(β) − ζ] dβ
∣∣∣∣

≤
∫

‖β‖d > c1

|f(α− β)[y(β) − ζ]| dβ

+
∫

‖β‖d ≤ c1

|f(α− β)[y(β) − ζ]| dβ < ε/2 + ε/2 = ε,

which proves the proposition.
Proposition 2:

lim
‖α‖d→∞

∫

IRd

f(α− β)y(β) dβ = 0

for each y ∈ BL1(IRd).
Proof of Proposition 2:
Both f and y belong to L2(IRd). Using a version of the

Parseval identity [11, p. 119],

(2π)d

∫

IRd

f(α− β)y(β) dβ

=
∫

IRd

exp {j(ω · α)}f̂(ω)ŷ(ω) dω, α ∈ IRd (2)

in which ω · α stands for the dot product of ω and α, j =√
−1, and f̂ and ŷ denote the Fourier transforms of f andx,

respectively. These Fourier transforms belong to L2(IRd).
By the Schwarz inequality, z given by z(ω) = f̂(ω)ŷ(ω)
for all ω belongs to L1(IRd). Therefore, by the Riemann-
Lebesgue lemma for functions in L1(IRd) [11, p. 57], the
right side of (2) approaches zero as ‖α‖d → ∞, proving
the proposition.
Proposition 3: There exists a continuous linear shift-
invariant map E : C → C such that (Ey)(α) = ζ for all
α ∈ IRd and each y ∈ C with lim‖α‖d→∞ y(α) = ζ, in
which ζ is an arbitrary complex number.
For a proof of this proposition, see the proof of the the-

orem in [13].

Continuing with the proof of the lemma, observe that

|(Fy)(α1) − (Fy)(α2)| ≤ ‖y‖∞
∫

IRd

|f(α1 − β)

−f(α2 − β)| dβ

= ‖y‖∞
∫

IRd

|f(β) − f(α2 − α1 + β)| dβ

inwhich the last integral approaches zero as‖α2 − α1‖d →
0. Thus, because f ∈ L1(IRd), we see that F in fact maps
into C.
Set H = EF with E as described in Proposition 3. We

see that H is a linear shift-invariant continuous map of
L∞(IRd) into C, and therefore of L∞(IRd) into itself. By
Propositions 2 and 3, the range ofH restricted toBL1(IRd)
is the zero function, showing that part (a) of the lemma
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holds. Using Propositions 1 and 3, we see that part (b) also
holds. This proves the Lemma.
It is of interest to note that we have proved a stronger

result than is stated in the lemma, in that the range
H[L∞(IRd)] of H can be taken to be contained in (the
relatively simple space) C. 5 There are several variations
of Lemma 1. For example, for d = 1, one can show (using
the result in [12]) thatH can be taken to be causal.
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