
1. Introduction
System survivability breaks limits of traditional

security concepts, and emphasizes the abilities of a

system to achieve its critical service in a timely

manner when it is suffering from disruptive faults or

accidents [1] [7]. That the systems can achieve their

critical services and recover the damaged services as

soon as possible when damages are detected, is the

basic idea of survivability, even after the main

components are damaged or destroyed. The condition

of any system is that there is no absolute security to

avoid from failure because of disruption, faults, or

accidents [2]. In order to safeguard the system to

provide services stably and reliably when fault

occurs, we must consider a technique for enhancing

system survivability [3].

Recently, the related techniques that ensure

system survivability are mainly from the views of

fault resistance and recognition, which is not

satisfying enough to the basic properties of

survivability. [2] developed a model that simulates

complete episodes of attacks on network computer

systems and the responses of these systems. This

approach has involved developing a flexible template

that can be used to analyze survivability of network

systems. [6] proposed a novel quantitative analysis

method based on grey analysis for network

survivability. Both of these techniques assert that the

returning of the system to the normal state should be

considered in the future.

Another property of survivability is recovery, an

ability to maintain or restore the essential or critical

service from damage as early as possible to fulfil its

mission as conditions permit. Recovery depends on

the severity of the damage (i.e. how many resources

have been affected), recovery strategies and

remaining undamaged resources that are in place. As

long as the system can reconfigure by de-allocating

destroyed resources under faults, and ultimately keep

the critical services running all along, the system will

survive. In this paper, we address the recovery

problem by resources reconfiguration and

reallocation. There are some good approaches and

effective techniques of how to recover the system,

such as ERAS [9], Hybrid Model [4], Cluster

Recovery [12], and Survivability Framework [5].

In our model, we adopt the concepts of [5], [9],

[12], and [4] combined with redundancy to recover

the system back to the good state. In our model we

assign resource redundancy at the outset and keep a

table for each critical and non-critical service nodes.

The stability of the entire system is based on active

and accurate functioning of each and every service

nodes. The system becomes unstable when at least

one active service nodes becomes dysfunctional and

it resources are pre-empted or denied access.

We start with summarizing briefly the

characteristics of the system we addressed. Next is

the State Transition Model [8] to describe the

behaviour of a system, then mapping the recovery

actions to this transition model. Since our objective is

to recover the system when incident occurs, we set

the system degrade gracefully when recovery process

running. It is a good thought, because most of the

recovery techniques placed after incident occurred,

the system fails to run. In this paper services and

processes are used interchangeably. It is worth

Critical Service Recovery Model for System Survivability

IRVING VITRA PAPUTUNGAN
1
 , AZWEEN ABDULLAH

2
 , LOW TAN JUNG

3

Computer and Information Sciences Department

Universiti Technologi Petronas

Bandar Sri Iskandar 31750 Tronoh

MALAYSIA
1
ipink@engineer.com,

2,3
{azweenabdullah, lowtanjung}@petronas.com.my

Abstract: - In this paper, we propose a recovery model to enhance system survivability. The model focuses on

how we preserve the system and resume its critical service while incident occurs by reconfiguring the system

based on the remaining available resources without affecting the stability of the system. There are three

motivating factors in our recovery model, the response time of reconfiguration, the cost of reconfiguration, and

the number of pre-empted non-critical service resources. The adoption of fault-tolerance using redundancy in

our model is discussed from a new perspective.

Key-Words : - critical service, fault-tolerance, reconfiguration, resources, survivability, redundancy

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 21

mentioned here that the model proposed in this paper

is a generic model that can be applied in any systems

i.e. readers should not restrict him/herself to just

computer systems or computer network systems.

Therefore terms like attack, nodes, real-time, etc are

not restricted to only the computer systems or

computer network systems.

2. The System Characteristics
There are a number of characteristics that the systems

posses in whole or in part which are important in

constraining the ways which these system approach

fault recovery. The charac-teristics are as follows

[10]:

• Heterogeneous and Very Large number of nodes.

• Different structure of critical infrastructure.

• Required good performance.

• Extensive database and low level redundancy.

3. The System Model
Error recovery in distributed applications can take

several forms: system-level approach to fault

tolerance, fault tolerance in wide area networking

applications, and reconfigurable distributed systems.

Our focus is reconfiguring the system through de-

allocation of destroyed resources and reallocation of

remaining available resources based on redundant or

pre-empted resources at the fastest possible time with

minimum service node disruption.

Figure 1 depicts the state transition model which

we use as a framework for describing the behaviour

of the system. The system contains 4 states. Good

state, vulnerable state, fault state, and recovery state.

The system moves to vulnerable state if it enables a

user to read or modify information without

authorization, grant or deny an entity access to a

resource without authorization. “Without

authorization” means in violation of the system’s

security policy. Vulnerability is the property of the

system, its attendant software and/or hardware, or its

administrative procedures, which causes it to enter

vulnerable state. The system enters fault state when

vulnerability is successfully exploited and the fault

unmasked by simple fault tolerance. In the next state,

recovery state, since the system needs to recover,

limit the damage and protect the system from DoS, it

goes into graceful degradation mode, while

maintaining the critical services. Critical services are

defined as the functions of the system that must be

maintained to meet the system requirements even

when the failures occur that threaten the system. In

order to survive the critical service, we assume the

recovery process will always successful; hence there

is no fail state.

Fig.1 System State Transition Model

4. The System Recovery Model
It will often be the case that the effects of a fault

leave the system with greatly reduced resources

(processing services, communications capacity, etc)

and substantial changes in the service provided to the

user will be necessary. The ability to tolerate certain

types of fault is the only practical approach to

achieving survivability. Beside considering single

fault for certain critical service, we will have to

consider multiple single sequential faults and

multiple concurrent faults. In the first instance, the

system has to reconfigure the reconfigured system

and in the latter, reconfiguration must be

simultaneous and consistent in order to maintain

stability. Our approach focuses on the first instance

as well.

 The recovery engine defines requirements for

the availability of the system. It guarantees that tasks

can be performed exactly at the required moment,

which an access is possible at the required moment

and that resources are not demanded unnecessarily or

are withheld.

This includes all functions ensuring that the

resources are available and usable when demanded

by an authorized subject (e. g. user or a process

performing a user task) and all functions that prevent

or restrict an influencing of time-critical operations.

 The recovery engine shall comprises all

functions for:

• The error detection and bridging,

Good State

Vulnerable State

Fault State

Recovery State

System
recovered

Exploit begins and
fault unmasked

Recovery action
triggered

Pre-attack action
occurs

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 22

• The limitation of consequences of errors to

the operation (of the system),

• The minimization of interrupts and

performance loss,

• The reaction to external demands and outputs

within fixed time (the focus point of this

paper).

4.1 Problem Definition
The problem can be described as: There is a Real

Time System in which has critical service and its

resources are destroyed by fault. The critical service

can be high level critical service or medium level

critical service, and low level critical service. In

order to sustain its running, it needs some resources

to reconfigure the damaged one. The resources can

be taken from 1) Redundant Resources of critical

service, 2) Unused Redundant of the system, 3)

Released Resources of non-critical service, and 4)

Pre-empt Resources of non-critical service that are

being currently used. In Real-Time-System, each

resource will be changed frequently. It means the

amount of those resources is different from time to

time. The stability of the system must be maintained,

even though the unstable condition occurred. It

means that the number of pre-empted non-critical

service resources should be as few as possible. Since

this process placed under graceful degradation mode,

we need to consider the duration of the process. The

duration, included the response time and the usage

time, must be less then the graceful degradation time.

Here we focus on the response time of pre-empting

non-critical service resources. The problem is to find

out how to reconfigure the critical service which can

ensure sustainable operation of critical services. The

problem is depicted in figure 2. We assume that error

detection (monitoring) and damage assessment are

taken care by some other mechanism such as control

system architecture [11] and we also assume that

there will be no further fault can be caused on to the

critical service when it is already damaged partially

or completely.

Fig.2 Abstract Problem Definitions

4.2 Reconfiguration Process
In the recovery state, we mapped our recovery

actions. The process starts with diagnosing the

destroyed resources that the critical services used.

Then it will analyze the available resources that can

be used for reconfiguration. And to move back to

good state, we allocate the available resources to

reconfigure critical services resources. See figure 3.

Fig.3 Recovery Process

In the diagnosing process, we assess the

damaged resources. The number of critical service

resources that are destroyed.

We define all the four resources, described in

previous sections, in three tables, master resources

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 23

allocation table, critical services table, and non-

critical services table. These three tables will be

created automatically (dynamic table creation) when

the system begins operation, and will be destroyed

when the system cease to exist. See table 1, 2, and 3.

Resource R1 R2 Rn

Required Resource

Used Redundant

Unused Redundant

Table 1 Master Resources Allocation Table

Resource R1 R2 Rn

Resource Currently Used

Redundant Resource

Damage Resource

Table 2 Critical Service Resources Table

Resource R1 R2 Rn

Resource Currently Used

Released Resource

Table 3 Non-Critical Service Resources Table

The master resource allocation table (Table 1)

shows the total resource currently used and allocated

for redundancy inside the running system. Required

resource means the resource that the system needs to

run all the services i.e., the total of all resources used

by the services, critical and non-critical. Used-

redundant means the redundant resources that are

currently used by the system’s service and unused-

redundant means the redundant resources that are not

currently used by the system. R1, R2, and Rn are the

resources of the system.

The critical services resources table (Table 2)

shows the resource used by the service, redundant

resource that available for that service, and the

resources that are destroyed by fault.

The non-critical services resources table (Table

3) shows the resource used by the service and the

resources that are released while the services are in

progress. Resources are taken-up and released when

it is not required.

In the analysis process, there are some scenarios

to analyze after an attack happens to the critical

service resources.

1. Checking the redundant resources of the critical

service

2. If there is not enough redundant resources of the

critical service, it will check the unused

redundant of the system

3. If there is not enough unused resources of the

system, it will check the released resources of

non-critical service

4. If there is not enough released resources of non-

critical service, it will check the resources that

currently used by non-critical service.

In the last process, allocation, we find the

feasible scheme of reconfiguration from available

resources that is optimum for critical service.

4.3 Resources Balancing
The most important thing in resource reconfiguration

is resource balancing, in order to keep the stability of

the system. We have three tables of resources. When

the system is on and the resource allocated, the table

will note every allocation into those tables. For

example, if there is a critical service, it needs four

resources to run the service. It means those four

resources will be allocated and noted in the critical

service resources table (resource currently used row)

and in the master resources allocation table (required

resource row). The same way goes to non-critical

service. Thus, if we allocated four resources for

critical service and four resources for non-critical

service, there will be eight required resources in the

master table. For redundant resources of critical

service, its number must be at least equal to one

resource.

The tables are updated dynamically when the

system runs and faulted. For example, if there are

some resources of the non-critical service that has

been released, the used resources must be deducted.

If there are some resources of critical service

destroyed, the used resources must be deducted as

well. But the required resource of master table does

not change. In our model we assume that there will

be no further faults to the affected critical service

node while it is being reconfigured.

5. Scenario Analysis
We will explain the practical application of Critical

Service Recovery model by a certain system in a

given environment for each scenario. We start up

assuming that the system detects the resources that

critical service uses are destroyed in a certain run. In

order to sustain its running, the system should

provide resources for the critical service. In the entire

scenario below, the master resource allocation table

values must equal to the sum of values in the critical

and non-critical services tables. The values are

updated or balanced on a real-time basis. We define

the three tables below with arbitrary number of

resources to explain our concept.

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 24

Resource R1 R2 R3

Required Resource 15 15 15

Used Redundant 6 6 6

Unused Redundant 5 5 5

Table 4 Master Resources Allocation Table

Resource R1 R2 R3

Resource Currently Used 5 5 5

Redundant Resource 2 2 2

Damage Resource 0 0 0

Table 5 Critical Service Resources Table

Resource R1 R2 R3

Resource Currently Used 10 10 10

Released Resource 0 0 0

Table 6 Non-Critical Service Resources Table

There is a critical service that needs 3 kinds of

resources (R1, R2, and R3) to runs its service. The

critical service needs 5 resources for each resource to

accomplish its mission. The non-critical service

needs 10. So the required resource equals to 15.

Scenario 1: Redundant Resources available with

critical service

Resource R1 R2 R3

Required Resource 15 15 15

Used Redundant 6 6 6

Unused Redundant 5 5 5

Table 7 Master Resources Allocation Table

Resource R1 R2 R3

Resource Currently Used 3 5 5

Redundant Resource 2 2 2

Damage Resource 2 0 0

Table 8 Critical Service Resources Table

Resource R1 R2 R3

Resource Currently Used 10 10 10

Released Resource 0 0 0

Table 9 Non-Critical Service Resources Table

One of the resources R1, of a critical service is

destroyed. It requires 2 resources to fix it. Since there

are enough redundant resources from the critical

service (5), the problem can be easily fixed without

affecting any other services.

Scenario 2: Redundant resources available with the

system

Resource R1 R2 R3

Required Resource 15 15 15

Used Redundant 6 6 6

Unused Redundant 5 5 5

Table 10 Master Resources Allocation Table

Resource R1 R2 R3

Resource Currently Used 1 5 5

Redundant Resource 2 2 2

Damage Resource 4 0 0

Table 11 Critical Service Resources Table

Resource R1 R2 R3

Resource Currently Used 10 10 10

Released Resource 0 0 0

Table 12 Non-Critical Service Resources Table

One of the critical resources R1 is destroyed. It

requires 4 resources to fix it. Unfortunately there are

only 2 redundant resources. In this case, the recovery

process will be fixed by adding 2 resources from the

unused redundant resources of the system; from the

master resource allocation controller.

Scenario 3: Released resources available with non-

critical services

Resource R1 R2 R3

Required Resource 15 15 15

Used Redundant 6 6 6

Unused Redundant 1 5 5

Table 13 Master Resources Allocation Table

Resource R1 R2 R3

Resource Currently Used 0 5 5

Redundant Resource 2 2 2

Damage Resource 5 0 0

Table 14 Critical Service Resources Table

Resource R1 R2 R3

Resource Currently Used 7 10 10

Released Resource 3 0 0

Table 15 Non-Critical Service Resources Table

One of critical resources R1 is destroyed. It

requires 5 resources to fix it. There are only 2

redundant resources of critical service and 1 unused

redundant of the system. The problem will be fixed if

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 25

the recovery process takes another 2 from released

resource of non-critical service resources.

Scenario 4: Resources are pre-empted from non-

critical services.

Resource R1 R2 R3

Required Resource 15 15 15

Used Redundant 6 6 6

Unused Redundant 1 5 5

Table 16 Master Resources Allocation Table

Resource R1 R2 R3

Resource Currently Used 0 5 5

Redundant Resource 2 2 2

Damage Resource 5 0 0

Table 17 Critical Service Resources Table

Resource R1 R2 R3

Resource Currently Used 9 10 10

Released Resource 1 0 0

Table 18 Non-Critical Service Resources Table

One of critical resources R1 is destroyed. It requires 5

resources to fix it. There are only 2 redundant

resources of critical service, 1 unused redundant of

the system and 1 released resource of non-critical

service. The problem will be fixed if the recovery

process pre-empts 2 resources from non-critical

service resources that currently used. However, since

we consider about the stability, the usage of it must

be as small as possible.

5.1 Recovery Steps
Now, we explain the recovery steps per each

scenario.

Scenario 1: Redundant Resources available with

critical service.

If critical service resources destroyed, then

firstly it will check its redundant resources to

complete the required ones. If available (enough)

then allocate.

begin

input damaged_resource;

input CS_redundant;

if (CS_redundant-damaged_resource) >= 0

then

 allocate(CS_redundant);

else

 loop until CS_redundant = 0

 allocate(CS_redundant);

 end loop;

 output(damaged_resource);

end if;

end

Scenario 2: Redundant resources available with the

system

If required resource not available with critical

service node then look in master table. Check

whether there are unused redundant resources

available. If available then allocate.

begin

input damaged_resource;

input system_unused_redundant;

if (system_unused_redundant-

damaged_resource) >= 0 then

 allocate(system_unused_redundant);

else

 loop until system_unused_redundant = 0

 allocate(system_unused_redundant);

 end loop;

 output(damaged_resource);

end if;

end

Scenario 3: Released resources available with non-

critical services

If scenario 1 and 2 fail to allocate the resources

then look into the non-critical service table for

unused or released resources. If available then

allocate.

begin

input damaged_resource;

input NCS_released_redundant;

if (NCS_released_redundant -

damaged_resource) >= 0 then

 allocate(NCS_released_redundant);

else

 loop until NCS_released_redundant = 0

 allocate(NCS_released_redundant);

 end loop;

 output(damaged_resource);

end if;

end

Scenario 4: Resources are pre-empted from non-

critical services

If scenario 1, 2 and 3 fails then pre-empt the

running resources from the non-critical services

based on minimum cost and time factors and if

possible including minimum interruptions to non-

critical services.

begin

input damaged_resource;

input NCS_used_resource;

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 26

if (NCS_used_resource-damaged_resource) >=

0 then

 allocate(NCS_used_resource);

else

 loop until NCS_used_resource = 0

 allocate(NCS_used_resource);

 end loop;

 output(damaged_resource);

end if;

end

Beside of those scenarios, we still have to

consider about multiple sequential faults. It means

there will be other faults after the reconfiguration

finished, either to the recent reconfigured critical

service or other critical services. All we have to deal

with this kind of fault is finishing the reconfiguration

one by one using the same way as described above.

Since the fourth scenario is the most important,

Fig 4 below shows a sample scenario graph for that

scenario.

Fig.4 Scenario Graph For Scenario 4

CS = Critical Service

NCS = Non Critical Service

Ri = Critical Service Resource

ri = Non Critical Service Resource

Si = Master Resource Controller

Ri(α) = The Amount of each CS Resource

ri(β) = The Amount of each NCS Resource

Si(γ) = The Amount of each Master Resource

ξ = The number of pre-empted NCS node

c = Cost of pre-empting the resource of NCS

t = The Response time of NCS

And the edge is represented by a tuple <c,t>

Here we divided the fourth scenario into three cases

of solution.

Case 1: ξ = 1

In this case, as CS resource has been destroyed, there

is only one NCS with the same resource that can be

pre-empted.

Rk(α) has been destroyed, where α ≥ 1. We can get

the α from pre-empted rk of NCS1, such that rk(β) ≥

Rk(α), then we pre-empt α from rk(β).

Case 2: ξ = 1

In this case, as CS resource has been destroyed, there

are more than one NCS with the same resource that

can be pre-empted, and the process will choose the

best one.

Rk(α) has been destroyed, where α ≥ 1. We can get

the α from pre-empted rk of {NCS1,…,NCSZ}, such

that rk(β) ≥ Rk(α), with condition min(ci,…,cz) or

min(t1,…,tz), then we pre-empt α from rk(β).

If there are two possibilities, one is minimum cost

but not for response time, another one is minimum

time but not for cost, then we should choose the

minimum response time, as we want to survive the

system.

Case 3: ξ > 1

In this case, as CS resource has been destroyed, there

is more than one NCS combination with the same

resource that can be pre-empted, and the process will

choose the best one.

Fig.5 Sample Case 3 Graph

Here assumed there are two solutions, we have to

choose one. Rk(α) has been destroyed, where α ≥ 1.

Let δ be the scheme. We can get the α from pre-

empted rk of: δ1 = {NCS1 ,NCSW-2}, such that

NCS1 NCSW-2 NCSW-1 NCSW

CS

1
1

2
2

2

NCS1 NCSW-1 NCSW

CS

<ci,ti>

<cw-1,tw-1>

<cw,tw>

<r1(β),…,rm(β)> <r1(β),…,rn(β)> <r1(β),…,rp(β)>

Resource Sj(Y)

<R1(α),…,Rq(α)>

Required

Redundant

Unused

Resource Rk(α)

Required

Redundant

Damaged

Resource ri(β)

Required

Released

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 27

)()(
1

αβ k

w

k

k Rr ≥∑
=

where its cost C1 = c1 + cw-2 and

time T1 = max(t1 ,tw-2); and δ2 = {NCSW-2 , NCSW-1 ,

NCSW}, such that)()(
1

αβ k

w

k

k Rr ≥∑
=

 where its cost

C2 = cw-2 + cw-1 + cw and time T2 = max(tw-2 , tw-1 , tw);

with condition min(C1,C2) or min(T1,T2) or

min(ξ1,ξ2), then we pre-empt α from rk(β). For this

case, we have to consider about the number of ξ as

well.

If there are two possibilities, one is minimum

cost but not for response time, another one is

minimum time but not for cost, then we should look

at the number of NCS, the minimum one will be

chosen.

Hence the conclusion of analysis and

allocation process if there is more than one

possibility for the fourth scenario, can be applied to

scenario 3, will be:

• Check the number of released or pre-

empted resource.

• Check the response time of NCS.

• Check the cost of taking NCS resource.

6. Conclusion and Future Work
The research on survivability has become an

interesting topic in the field of security, and one of its

emphases is how to improve the abilities of

emergency response and damage recovery.

In this paper, we presented our preliminary

attempts at defining a model to recover a critical

service of a system and our plan is to set up a

mathematical model for simple basis Decision

Support System for survivability. We proposed an

algorithm to analyze and allocate resources for

reconfiguring the resources by assigning redundant

resources to the critical services and pre-empting

resources from non-critical services. The limiting

conditions were the response time, minimally pre-

empting resources from non-critical services and cost

of the implementation. All these limitations have

been considered in this paper. We would like to

extend this model for an arbitrary number of faulty

critical and non-critical services running concurrently

and to consider other limiting conditions as well.

References

[1] R. Westmark, A Definition for Information

System Survivability, Proceeding of the 37th

Hawaii Internal Conference on Systems

Sciences (HICSS'04), IEEE, 2004.

[2] S.D. Moitra, S.L. Konda, A Simulation Model

for Managing Survivability of Networked

Information System, Technical Report,

CMU/SEI-2000-TR-020, 2000.

[3] Somesh. J, J.M. Wing, Survivability Analysis of

Networked Systems, ICSE 2001, Toronto, 2001.

[4] J. Park, P. Chandramohan, Static vs. Dynamic

Recovery Models for Survivable Distributed

Systems, Proceedings of 37th Hawaii

International Conference on System Sciences,

2004.

[5] X. Lin, M. Zhu, R. Xu, A Framework for

Quantifying Information System Survivability,

ICITA 2005, IEEE, 2005.

[6] G. Zhao, H. Wang, J.Wang, A Novel

Quantitative Analysis method for Network

Survivability, IMSCCS 2006, IEEE, 2006.

[7] R. Ellison, D. Fisher, and et al, Survivable

network systems: An Emerging Discipline.

Technical Report, CMU/SEI-97-153, 1997.

Revised 1999.

[8] K. Goseva-Popstojanova, et al., Characterizing

Intrusion Tolerance Systems using State

Transition Model, DARPA Information

Survivability Conference and Exhibition, June

2001.

[9] J. Wang, H. Wang, G. Zhao, ERAS – an

Emergence Response Algorithm for

Survivability of Critical Services, IMSCCS

2006, IEEE, 2006.

[10] J. Knight, M. Elder, X. Du, Error Recovery in

Critical Infrastructure Systems, Proceedings of

the 1998 Computer Security, Dependability, and

Assurance (CSDA’98) Workshop, Williamsburg,

VA, November 1998.

[11] K. Sullivan, J. Knight, X. Du, S. Geist,

Information Survivability Control System,

Proceeding of 21st Intermational Conference on

Software Engineering, IEEE, 1999.

[12] M.M. Aung, K. Park, J.S. Park, Survival of the

Internet Application: A Cluster Recovery

Model, Proceeding of the 6th IEEE Inter-

national Symposium on Cluster Computing and

the grid Workshop, 2006.

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007 28

