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Abstract: - This paper describes a derivative-free method to solve a non-linear constrained optimization problem 
that arises from the mathematical formulation of an activated sludge system of a wastewater treatment plant 
(WWTP), in which the objective is to minimize the investment and operation costs. The method relies on an 
augmented Lagrangian function to penalize infeasible solutions and uses the original Hooke and Jeeves pattern 
search method for solving bound constrained subproblems. The experimental results are very promising and give 
economically attractive WWTP designs. 
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1 Introduction 
 
With the growing need to decrease the installation 
and operation costs of a wastewater treatment plant 
(WWTP), the search for a minimum cost design is 
becoming more and more challenging. To be able to 
achieve an optimal WWTP design, an optimization 
procedure that considers the mathematical modeling 
of an activated sludge system and the definition of a 
cost function is carried out. 
     Besides the densely populated and industrial 
regions, there are small and poor regions in the north 
of Portugal that produce high quality wines and have 
significant effluent variations in terms of amount of 
pollution and flow, during the vintage season. For 
these reasons, it is crucial to reduce, as much as 
possible, the costs associated with the design and 
operation of WWTPs, in such a way that the 
environmental law is accomplished. 
     A typical WWTP is usually defined by a primary 
treatment, a secondary treatment and in some cases a 
tertiary treatment. The cost of the primary treatment, 
usually a physical process that aims to eliminate the 
gross solids and grease, does not depend on the 
characteristics of the wastewater as significantly as 
the secondary treatment. So, the primary treatment  is 
not included in the optimization procedure. However, 
its impact on the cost of the secondary treatment is 
analyzed. The secondary treatment is an activated 
sludge system, since this is the most common 
treatment process in WWTPs. This system consists of 
an aeration tank and a secondary settler. In the 
planning and design of a wastewater treatment plant 

the role played by the secondary settler is, most of the 
time, underestimated. 
     The most common models in literature to describe 
the aeration tank are the ASM kind models, in 
particular the ASM1 model [8]. To describe the 
secondary settler, the ATV [3] and the double 
exponential (DE) [13] models have been used in the 
past. The ATV model is usually used as a design 
procedure to new WWTPs. It is based on empirical 
equations obtained by experiments and does not 
contain any solid balances, although it contemplates 
peak wet weather flow (PWWF) events. The DE 
model is the most widely used in simulations and it 
produces results very close to reality. However, as it 
does not provide extra sedimentation area needed 
during PWWF events, the resulting design has to 
consider the use of security factors, many times 
inadequate. 
     The optimization procedures found in the 
literature involving secondary settlers are based on 
very simple models [14] or on the ATV model [1]. To 
the best of our knowledge, and until last year, there 
have been no optimization attempts using the DE 
model. However, simulation procedures have been 
carried out with the DE model aiming to find the best 
combination of the decision variables to achieve the 
minimum cost design, choosing one among some 
possible designs [11, 12]. 
     Recently real optimization procedures using the 
DE model were carried out in order to obtain the best 
optimal WWTP design in the sense that a minimum 
cost is attained [6]. This work compares an 
innovative model that combines the ATV and DE 
models, with the two traditional models used 
separately. Numerical experiments show that the 
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combined model provided the most equilibrated 
WWTP design. Further, the three resulting designs 
were introduced in the GPS-X simulator [15] and a 
stress condition, based on a PWWF value of about 5 
times the normal flow, was imposed. Only the 
combined model was able to support this adverse 
condition maintaining the quality of the effluent 
under the values imposed by the portuguese law. 
     In the presence of non-smooth functions as 
encountered in the mathematical equations involved 
in the DE model, a derivative-free optimization 
technique is the most appropriate. Thus, a pattern 
search algorithm is proposed. This algorithm relies on 
an augmented Lagrangian function in order to obtain 
a solution that satisfies the equality and inequality 
constraints of the problem. The algorithm was coded 
in the C programming language and incorporates an 
interface to AMPL [7] to be able to read the problem 
coded in AMPL. The experimental results are very 
promising and give economically attractive WWTP 
designs. 
      This paper is organized as follows. Section 2 
provides a brief discussion of the modeling process of 
the activated sludge system and Section 3 proposes 
the cost function. The augmented Lagrangian pattern 
search algorithm is discussed in Section 4 and 
Section 5 contains the results. Some conclusions are 
drawn in Section 6.  
 
2 Modeling process of the activated 

sludge system 
 
To model the aeration tank, where the biological 
reactions take place, the ASM1 model is used. The 
tank is considered a CSTR in steady state. As our 
purpose is to make cost predictions in a long term 
basis, it is reasonable to do so. The balances around 
this unit define some of the constraints of the 
mathematical model. 
     To model the secondary settler, which plays a 
crucial role in the wastewater treatment, a 
combination of the two traditional models ATV and 
DE is used. Previous work [4,6] on this matter shows 
that the model is prepared to overcome PWWF 
events without over dimensioning and overcomes the 
limitations and powers the advantages of the other 
two, when used separately. The combination proved 
to be robust in all situations. 
     The system behaviour, in terms of concentration 
and flows, may be predicted by balances. In order to 
achieve a consistent system, these balances must be 
done around the entire system and not only around 
each unitary process. They were done to the 
suspended matter, dissolved matter and flows. 

     In a real system, some state variables are, most of 
the time, not available for evaluation. Thus, another 
important group of constraints in the mathematical 
model is a set of linear equalities that define 
composite variables. 
     Some system variables definitions should be 
added to the model in order to define the system 
correctly. These definitions include the sludge 
retention time, the recycle rate, the hydraulic 
retention time, the recycle rate in a PWWF event, the 
recycle flow rate in a PWWF event and the maximum 
overflow rate. 
     All the variables in the model must be 
nonnegative, although more restricted bounds are 
imposed to some of them due to operational 
consistencies. These conditions define a set of simple 
bounds on the variables. For example, the dissolved 
oxygen has to be always greater or equal to 2 mg/L. 
For a more thorough analysis of all the equations the 
reader is referred to [4,5]. 
     Finally, the quality of the effluent has to be 
imposed. The quality constraints are usually derived 
from law restrictions. The most used are related with 
limits in the COD, N and TSS at the effluent. 
     The obtained mathematical model has 64 
parameters, 115 variables and 105 constraints, where 
67 are nonlinear equalities, 37 are linear equalities 
and there is only 1 nonlinear inequality. 104 variables 
are bounded below and 11 are bounded below and 
above. 
 
 
3 The cost function 
 
The cost function is used to describe the installation 
and operation costs of a WWTP, in a way that reflects 
the behaviour of each unitary process. In the present 
study, only the aeration tank and the secondary settler 
are considered. 
     The basic structure of the cost function, based on 
the work done by Tyteca et al. [14], is baZC = , 
where C represents the cost and Z the variable that 
most influences the design of the unitary process. The 
parameters a and b are estimated according to the 
costs associated with the unit under study and depend 
on the local conditions where the WWTP is being 
built. A least squares technique considering real data 
collected from a portuguese WWTP company builder 
was used. At the present, the collected data come 
from a set of WWTPs in design, therefore no 
operation data are available. However, from the 
experience of the company, it is known that the 
maintenance expenses for the civil construction are 
around 1% during the first 10 years and around 2% in 

Proc. of the 9th WSEAS Int. Conf. on Mathematical and Computational Methods in Science and Engineering, Trinidad and Tobago, November 5-7, 2007     110



the next 10. To the electromechanical components, 
the maintenance expenses are negligible, but all the 
material is usually replaced after 10 years.  The 
energy cost is directly related with the air flow ( SG ). 
     The total cost (TC) function is given by the sum of 
the operation and investment costs, in a present value 
basis, from the two considered units (the aeration 
tank and the secondary settler) and is given by 
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(1) 
where aV  is the aeration tank volume, sA and h are 
the secondary settler surface area and depth, 
respectively. Function (1) is the objective function of 
the mathematical problem. 
 
 
4 An augmented Lagrangian pattern 

search algorithm 
 
When the double exponential model is incorporated 
in the formulation of the optimization problem, some 
of the constraints are non-smooth functions. Thus, 
any optimization method that relies on derivative 
information may have convergence problems. To 
address this issue, a derivative-free algorithm based 
on an augmented Lagrangian paradigm is proposed.  
      The general form of a nonlinear constrained 
programming problem can be expressed as follows: 

)( minimize xf
nx ℜ⊂Ψ∈

 (2) 

where x  is the vector that contains the decision 
variables of the problem, n is the number of variables, 

{ }uxlxgxbx ≤≤≤==Ψ ,0)(,0)(:  denotes the 
feasible region, ℜ→ℜnf :   is the objective 
function, 0)( =xb  are the equality constraints and 

0)( ≤xg  are the inequality constraints. Some of the 
bounds ,l u may not exist, meaning that 

+∞=−∞= jj ul , , for some { }nj ,,1 K∈ . Here we 

consider mnb ℜ→ℜ:  and png ℜ→ℜ: . To solve 
problem (2), a penalty multiplier technique is 
proposed.  
 
4.1 The penalty multiplier technique 
 
A penalty multiplier technique solves a sequence of 
very simple subproblems whose objective function 
penalizes all or some of the constraints violation. 

These functions are known as penalty functions. The 
following augmented Lagrangian penalty function 
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is used, where µ  is a positive penalty parameter, 
T

m ),,( 1 λλλ K= and T
p ),,( 1 δδδ K=  are the Lagrange 

multipliers vectors associated with the equality and 
inequality constraints respectively [4]. The purpose of 
function ;.)(xΦ  is to penalize solutions that violate 
the equality and inequality constraints only. The 
simple bounds uxl ≤≤  are left unchanged.  Thus, 
the corresponding subproblems are  

),,;(minimize jjjx
nx

µδλΦ
ℜ⊂Ω∈

 (3) 

where the feasible region is now defined as 
}:{ uxlx ≤≤=Ω . The solution of (3) for each set of 

fixed jλ , jδ  and  jµ , gives an approximation to the 
solution of (2). Denote this approximation by 1+jx . 
Here, the index j  is the iteration counter. As ∞→j  

and 0→jµ , the solutions of subproblems (3) 
converge to the solution of (2). We refer to Bertsekas 
[2] for details. The Lagrange multipliers ),( jj δλ  are 
estimated in this iterative process according to the 
following updating formulae 
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     This outer iterative process is halted when an 
approximation 1+jx  that satisfies the first-order 
optimality conditions for problem (2) is found. These 
conditions define the convergence criteria of the 
algorithm and involve appropriate measures of 
feasibility, complementarity and optimality. The 
traditional augmented Lagrangian methods are locally 
convergent if the subproblems (3) are solved 
according to a certain tolerance, for sufficiently small 
values of the penalty parameter. To ensure global 
convergence, the penalty parameter must be driven to 
zero and the Lagrange multipliers estimates must 
have a reasonable behaviour. 
     In general, the choice of the penalty parameter jµ  
has a significant impact on the performance of this 
outer iterative process. If µ  is reduced too rapidly, 
the method may become too slow. Thus, a reduction 
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of the parameter jµ  is carried out only if an 
appropriate feasibility and complementarity measure, 
here denoted for simplicity by cfM / , computed at the 
new approximation, by solving (3), is not too small. 
This procedure aims to force a reduction in cfM / for 
the subproblem of the next iteration. On the other 
hand, if cfM /  is small enough, according to a given 

tolerance (for instance, j
cfM η≤/ ), the penalty 

parameter is maintained and the Lagrange multipliers 
jλ  are updated using (4). The updating of the 

multipliers jδ  (see (5)) is done in both cases and 
precedes them as the new estimates are required to 
evaluate cfM / . The algorithm for solving problem 
(2) is the following. 
 
Algorithm 1: (augmented Lagrangian multiplier method) 
Initialize variables and algorithm parameters 
While  convergence criteria are not satisfied  do 
Inner iterative process: approximately solve subproblem 
(3) according to a tolerance jε  
Update multipliers  jδ  
     if  j

cfM η≤/  then 

          Update multipliers jλ  
          Update_1 algorithm parameters 
     else 
          Reduce jµ  
          Update_2 algorithm parameters 
     end if 

1+← jj  
end while 
 
     Procedures Update_1 and Update_2 are slightly 
different. They are used to update, although in a 
different manner, the error tolerances jε  and 

jη required in the algorithm [4]. 
 
4.2 The Hooke and Jeeves pattern search 
 
We now show how subproblem (3) is solved by a 
derivative-free method. We chose to implement a 
pattern search method [10]. In this method a series of 
exploratory moves about the current iterate, kx , is 
conducted in order to find a new iterate, 

kkkk sxx ∆+=+1 , with a lower objective function 
value, where k∆  represents the step length and ks  
determines the direction of the step. The step  kk s∆  is 
computed by the Hooke and Jeeves exploratory 
moves [9]. The index k  is the iteration counter in this 

inner iterative process. The corresponding algorithm 
is as follows. 
 
Algorithm 2: (pattern search method) 
Initialize with kx Ω∈  
while  termination criterion is not satisfied  do 
Compute step kk s∆ using Hooke and Jeeves exploratory 
moves  such that kkk sx ∆+ Ω∈  
     if  0;.)(;.)( >∆+Φ−Φ kkkk sxx  then 

    kkkk sxx ∆+=+1  
     else 
    kk xx =+1  
     end if 
Update kk s and ∆  

1+← kk  
end while 
      
     The exploratory moves to produce kk s∆  and the 
updating of k∆  and ks  define a particular pattern 
search method and their choices are crucial to the 
success of the algorithm. An iteration with 

0;.)(;.)( >∆+Φ−Φ kkkk sxx  is considered successful; 
otherwise, the iteration is unsuccessful. When an 
iteration is successful, the step length is not allowed 
to decrease, while in an unsuccessful iteration, k∆  
should be reduced. 
     The condition that halts this inner iterative 
process, here designated as termination criterion, is 
based on the size of the step length k∆ . If condition 

jk ε≤∆  is true, the algorithm cannot make progress 
and should be terminated. The parameter jε  is 
defined in the outer iterative process. 
     The Hooke and Jeeves exploratory moves differ 
from the traditional coordinate search, as they also 
include a  ‘pattern step’  in an attempt to accelerate 
the process. 
     If the previous iteration was successful 
( 0)(;.)( ;.

1 >Φ−Φ − kk xx ), the current iteration carries 
out a coordinate search about a speculative iterate 

)( 1−−+ kkk xxx , instead of kx . This is the ‘pattern 
step’. The idea is to investigate a possible progress 
along the promising direction 1−− kk xx . For 
example, if 1 and 0 −≠> kk xxk , this search takes the 
step 1−− kk xx  from kx . The function is evaluated at 
this new point that is temporarily accepted, even if 

;.)();.)(( 1 kkkk xxxx Φ≥−+Φ − . The Hooke and 
Jeeves algorithm then carries a coordinate search 
about the temporary iterate )( 1−−+ kkk xxx . If this 
coordinate search is successful, the returned point is 
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accepted as the new iterate 1+kx ; otherwise, the  
‘pattern step’  is rejected and the method is reduced 
to coordinate search about kx . 
     We note that the Hooke and Jeeves exploratory 
moves must return a feasible iterate (recall (3)). If 
the new accepted iterate is infeasible, the point is 
reflected into the set Ω  as follows: 
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for all ni ,...,1= . If the iterate remains infeasible, 
then 2/)( iii ulx += . 
 
 
5 Results and discussion 
 
The following results were obtained using the data 
provided by a WWTP company builder, 
corresponding to four small towns in the interior 
north of Portugal – Alijó, Murça, Sabrosa and Sanfins 
do Douro. These are medium scale WWTPs, being 
the first slightly bigger than the others. The data 
collected from the four small towns are shown in 
Table 1. 
     Three experiences were carried out with the four 
WWTPs using the proposed method. First, no 
primary treatment is used. Then 50% and 70% 
primary treatment efficiencies are included. 
 
Table 1 Data collected from the four small towns. 

 Location of the WWTPs 
 Alijó Murça Sabrosa Sanfins 
population 
equivalent 6850 3850 2750 3100 

influent flow 
(m3/day) 1050 885 467.5 530 

peak flow 
(m3/h) 108 86.4 48.6 54 

COD 
(Kg/m3) 2000 1750 1250 1250 

TSS 
(Kg/m3) 750 660 610 610 

 
Tables 2 - 5 show the optimal values for some of the 
decision variables, namely, the aeration tank volume, 
the air flow, the area and depth of the secondary 
settler, and COD, TSS and N at the effluent. The total 
costs (TC), in millions of euros, for the three cases, 
no primary treatment, 50% and 70% efficiencies in 
the primary treatment, are also reported. 
     We observe that the presence of the primary 
treatment causes a reduction in the total cost. As the 
primary treatment efficiency gets better, the cost of 

the secondary treatment decreases. The exception is 
the Sanfins do Douro WWTP, where the highest cost 
is obtained when the primary treatment efficiency is 
70%. This is due to the extremely high value of the 
settling depth in the obtained design. We feel that this 
could be solved by imposing an upper bound on the 
settling depth. 
 

Table 2 Results for the Alijó WWTP. 
efficiency 0 50 70 
Va 2632 1155 1308 
GS 108 101 100 
As 654 600 659 
h 23.8 16.8 9.8 
COD 41.1 22.8 43.5 
TSS 22.8 19.9 16.4 
N 6.4 8.2 6.4 
TC 2.79 1.81 1.60 

     
Table 3 Results for the Murça WWTP. 

efficiency 0 50 70 
Va 1599 946 748 
GS 102 101 159 
As 746 933 715 
h 16.5 11.1 7.2 
COD 12.8 40.0 63.7 
TSS 10.4 20.1 10.6 
N 3.1 6.8 6.8 
TC 2.24 2.00 1.44 

 
Table 4 Results for the Sabrosa WWTP. 

efficiency 0 50 70 
Va 1344 1447 706 
GS 100 100 100 
As 707 768 987 
h 17.5 14.5 7.9 
COD 88.7 63.2 63.7 
TSS 20.1 20.4 12.6 
N 9.1 8.6 8.1 
TC 2.14 2.11 1.76 

 
Table 5 Results for the Sanfins do Douro WWTP. 

efficiency 0 50 70 
Va 1263 885 801 
GS 103 100 182 
As 703 736 998 
h 14.0 8.8 24.7 
COD 51.7 28.7 87.8 
TSS 24.0 13.8 16.5 
N 10.5 9.5 9.4 
TC 1.90 1.53 3.36 

  
     In all cases, the COD, TSS and N law limits (125, 
35 and 15, respectively) were never achieved (see 
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rows 6 - 8 in Tables 2 - 5), meaning that the obtained 
solutions are robust. We observe that the presence of 
the primary treatment reduces the aeration tank 
volume although the air flow is maintained at the 
same range of values.  
  
 
6 Conclusions 
 
This paper presents a new derivative-free 
optimization algorithm for solving a problem that is 
based on a WWTP design, in which the objective is 
to minimize the costs associated with the installation 
and operation of an activated sludge system. 
     Four real WWTPs were analyzed and the 
mathematical modeling of the activated sludge 
system was carried out using the ASM1 model for the 
aeration tank and a combination of the ATV and DE 
models for the settling tank. The cost function was 
obtained using real data provided by a portuguese 
WWTP company builder. This mathematical 
programming problem was coded in AMPL and 
solved using an augmented Lagrangian pattern search 
method. This method does not require any derivative 
information being the most appropriate when the 
mathematical problem involves non-smooth 
functions. The obtained optimal WWTP designs are 
economically attractive. The impact of the primary 
treatment on the total cost is also analyzed. 
     Future developments will focus on the 
optimization of a WWTP in operation in which only 
the operational parameters are considered as decision 
variables. The dynamic equations that appear in the 
mathematical formulation of the problem will be 
solved by a numerical integrator. 
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