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Abstract: Danger waste disposal systems are typically comprised a series of barriers that act to protect the envi-
ronment and human health. The presence of several barriers enhances confidence that the waste will be adequately
contained. This article is focused on one of bariers, bentonite buffer. Bentonite buffer intervene between the waste
canister and the host rock. One of main tasks of the bentonite buffer is to reduce and delay water flow from the
host rock in order to prevent the contact of water with the waste canister as long as posible. Model, described in
this article, solve coupled task of unsteady heat and water vapor flow in bentonite. In the end, model results are
compared with experimental results.
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1 Introduction
The major problem of dangerous (radioactive or toxic)
waste repositories is water which present in the host
rock [3], [4]. The water can not only jeopardize the
integrity of the waste canister, but also, form possi-
ble pathway to the biosphere for the hazardeous sub-
stances.

The problem of resaturation of the initially air-dry
bentonite is very complex. This phenomenon is influ-
enced by hydraulic, mechanic, thermal and chemical
processes. These processes are coupled by a series of
parameters and equations. Some of them are highly
nonlinear and some of them are not yet completly un-
derstood.

Many scientists have worked with models, which
solve this problem using Darcy law. But these type of

models do not reflect effect of water vapor. In this ar-
ticle is presented model, which solve this task in a dif-
ferent way. This model is based on water vapor diffu-
sion. Model solve the unsteady coupled heat and mass
problem by using primal formulation of finite element
method.

2 Problem formulation
Heat and mass transportation parameters and the dis-
tribution of moisture and temperature within porous
materials are based on the energy and moisture con-
servation equations during the transportation. The
transfer is described by partial differential equations
derived from the set of equations publisched by Henry
[6]
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Domain of task is denotedΩ with boundaryΓ.
The problem is discreted in the space variablex =
{x, y}.

Unknown variables areT temperature,Ca wa-
ter vapor concentration in the air between bentonite
grains andCb water vapor concentration in the ben-
tonite grains.

Furthermore t time, cv(T,Ca, Cb) volumetric
heat capacity,χ(T,Ca, Cb) latent heat of sorption or
adsorption of water vapor by solid grains (it gives
information on interaction forces between the wa-
ter vapor molecules and the sorbent surface-binding
energy),λ(T,Ca, Cb) thermal conductivity,ε poros-
ity of bentonite,τ effective tortuosity (it is related
to the hindrace imposed on diffusing particle by
the bentonite grains),Da(T,Ca, Cb) diffusion coef-
ficient of water vapor in the air,C100

a (T ) water va-
por concentration for100% relative humidity (RH)
in the air,ϕ(T,Ca, Cb) inversion sorption curve, and
γ = γ(T,Ca, Cb) general function defining sorp-
tion/adsorption speed of bentonite.

Material parametercv, χ, λ, Da, C100
a , γ andϕ

are assumed as functions and must be positive and
finiteness.

2.1 Boundary conditions

The set of boundary conditions is added. In the model
are assume three kind of boundary conditions. Split-
ting of boundaryΓ on three disjuction partsΓ = Γ1∪
Γ2∪Γ3 is assumed.n is outter normal of boundaryΓ.

Dirichlet boundary condition defined temperature
TD(t), eventually water vapor concentrationCa

D(t) on
boundaryΓ1,

T (x, t) = TD(t)
Ca(x, t) = Ca

D(t)
x ∈ Γ1 . (2)

Neumann boundary condition defined heat flow
qT (t), eventually water vapor flowqCa(t) through
boundaryΓ2,

λ∇T (x, t).n = qT (t)
Da∇Ca(x, t).n = qCa(t)

x ∈ Γ2 . (3)

Newton boundary condition defined heat flow,
eventually water vapor flow generated by heat drop
T − TW (t), eventually by water vapor concentration
dropCa − Ca

W (t) on boundaryΓ3,

λ∇T.n + σT (t)(T − TW (t)) = 0
Da∇Ca.n + σCa(t)(Ca − Ca

W (t)) = 0
x ∈ Γ3 ,

(4)
whereσT (t) > 0 andσCa(t) > 0.

2.2 Initial conditions

Initial conditions are defined by general functions on
domainΩ. These function can be known, for example
constant functions, or can be obtained by solutions of
steady task.

T (x, 0) = To(x)
Ca(x, 0) = Ca

o (x)
Cb(x, 0) = Cb

o(x)
x ∈ Ω . (5)

2.3 Weak formulation

To use the finite element method, the weak formu-
lation has to be derived. Let beH0(Ω) = {f ∈
W 1

2 (Ω), f |Γ = 0} the space of testing functions.
Further, is denoted the scalar products as(ϕ,ψ) =∫
Ω ϕψdΩ, 〈ϕ,ψ〉 =

∫
Γ ϕψdΓ. Equations in set of

equations (1) are multiplied by testing functionw ∈
H0(Ω) and integrated overΩ. Then a Green formula
is used and substitution of boundary conditions gives
integral identities
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The problem is solved in time intervalI = 〈0, t∗〉.
ThenT ∗, C∗

a , C
∗
b ⊂ AC(I,W 1

2 (Ω)) is denoted as the
function fulfilling the Dirichlet boundary conditions
(2). Let

T (x, t) = T ∗(x, t) + T0(x, t),
Ca(x, t) = C∗

a(x, t) + Ca0(x, t),
Cb(x, t) = C∗

b (x, t) + Cb0(x, t),

whereT0, Ca0, Cb0 ∈ AC(I,H0(Ω)). Then func-
tions T ,Ca,Cb are the weak solution of set of equa-
tions (1) with boundary conditions (2)-(4) and initial
conditions (5) in time intervalI, if they fulfill the iden-
tities (6) for arbitraryw ∈ H0(Ω).

Existence of integrals in (6) is allowed by finite-
ness of functionscv, χ, λ,Da, C100

a , γ andϕ.

2.4 Spatial discretization

For spatial discretization the tetrahedrons with linear
base functions are used (see figure 1).

Figure 1: Element of discretization

AreaΩ is then approximated by the setΩh,

Ωh =
⋃

e∈Eh

e,

whereEh is the set of all discretization nodes. On ev-
ery simplexe with nodes(s1, s2, s3), three base func-
tions are established,

wi = αi
0 + αi

1x1 + αi
2x2 ,

i = 1, 2, 3. They fulfill the conditionwi(sj) = δij .
The approximation of weak solution is looked for in
the form (r is number of nodes)

T h(x, t) =
r∑

i=1

T i(t)wi(x),

Ch
a (x, t) =

r∑
i=1

Ci
a(t)wi(x), (7)

Ch
b (x, t) =

r∑
i=1

Ci
b(t)wi(x).

CoefficientsT i(t), Ci
a(t), C

i
b(t) are values of

unknowns at the nodes of discretization in timet.
The approximations (7) are entered into identities(6).
Then is searched for their fulfilment for all base func-
tionswj , j ∈ r̂. The resulting system of ordinary
differential equations has the block structure

 BT 0 CT

0 BCa CCa

0 0 BCb

 d

dt

 T
Ca

Cb

 +

 AT 0 0
0 ACa 0
0 CCb

ACb

  T
Ca

Cb

 =

 RT

RCa

RCb

 , (8)

where

[AT ]i,j = λ(∇wi,∇wj) , [ACa ]i,j = Daε
τ (∇wi,∇wj) ,

[ACb
]i,j = γϕ(wi, wj) , [BT ]i,j = cv(wi, wj) ,

[BCa ]i,j = ε(wi, wj) , [BCb
]i,j = 1

ε (wi, wj) ,

[CT ]i,j = χ(wi, wj) , [CCa ]i,j = (1− ε)(wi, wj) ,

[CCb
]i,j = − γ

C100
a

(wi, wj) ,
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[RT ]i = λ〈α,wi〉 ,
[RCa ]i = Daε

τ 〈β,wi〉 ,
[RCb

]i = 0 ,

[T]i = T i(t) ,
[Ca]i = Ci

a(t) ,
[Cb]i = Ci

b(t) .
Values of functionscv, χ, λ, Da, C100

a , γ andϕ
in given time are chosen to be piecewise constant on
each element (in the manner described further). Val-
ues of functionsε andτ are also chosen to be piece-
wise constant on each element, but as material char-
acteristic, independent on time.

3 Numerical model
System (8) with initial conditions (5) can be solved
e.g. by the Euler method. Its advantage is, that it can
be used for case, when the system has coefficients de-
pending on unknown quantities (cv, χ, λ,Da,C100

a , γ
andϕ).

3.1 Time discretization

The implicit scheme for approximation of time deriva-
tives is used,

∂f

∂t

∣∣∣∣
t=n

≡ fn+1 − fn

∆t
.

This scheme provides sufficient numerical stability.
Then the system (8) can be rewriten more simply,

DẊ + D̃X = R ,

where

D =

 BT 0 CT

0 BCa CCa

0 0 BCb

 ,

D̃ =

 AT 0 0
0 ACa 0
0 CCb

ACb

 ,

X =

 T
Ca

Cb

 ,

R =

 RT

RCa

0

 .

ValuesDa, K, γ in nth time step were implicitly
chosen by substituting the guessX̂(n+1) in time step
(n + 1). Matrix D̃ and right hand sideR are time-
dependent, more accurately, they depend on values
cv,χ,λ,Da,C100

a ,γ andϕ which consist inX. Fornth

time step, they are having form

D̃(n) = D̃(X̂(n+1)) ,

R(n) = R(X̂(n+1)) .

Consequently, the problem

D
X(n+1) −X(n)

∆t
+ D̃(n)X(n+1) = R(n) ,

was solved and the variation between the solution
X(n+1) and the guesŝX(n+1) was watched. For the
large variation, the solutionX(n+1) was used as new
estimateX̂(n+1) (for first iteration we used̂X(n+1) ≡
X(n)). This process was repeated several times until
only small variation are reached. Then the new initial
problem for time step(n+2) was solved. In particular
iteration innth time step the linear system is solved,

(D + ∆tD̃(n))X(n+1) = R(n)∆t+ DX(n) .

If denoted

R(n)∆t+ DX(n) = R̃(n) ,

the linear system can be written in block structure,

 BT + ∆tA(n)
T 0 CT

0 BCa + ∆tA(n)
Ca

CCa

0 ∆tC(n)
Cb

BCb
+ ∆tA(n)

Cb


 T(n+1)

C(n+1)
a

C(n+1)
b

 = R̃(n) . (9)
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Figure 2: Design of experimental device

Figure 3: Model mesh of experimental device

4 Experiment BenchMark 1.3

4.1 Design of experimental device

Experimental device and results obtained by this de-
vice were published in [5]. Scheme of experimental
device is shown on figure 2.

The two cylindrical specimens (38 mm diameter
and76 mm height) are placed in the device, grey color
on the scheme.

The heater is located between them, red color on
the scheme. The heater is a copper cylinder (38 mm
diameter and50 mm height) with electrical resistor in-
side. The resistor is connected to an adjustable source
of direct current, so that output heating power is kept
on levelQheater = 2, 17 W.

The temperature of other bases of specimens are
controled by stainless steel collers on valueTcooler =
30 ◦C, blue color on the scheme.

The ensemble is contained in a perspex tube. This
tube minimalize water vapor losses and heat losses.

The initial temperature of all parts of experiman-
tal device isTinitial = 22◦C. The initial saturation
of bentonite specimens responds to ambient humidity
RHinitial = 50%.

In time t = 0 s the heater and the coolers were
switched on. Experiment was performed till the mo-
ment, when the temperatures in each measured points
were stabilized. Final time was175 hours.

4.2 Measured values

The evolution of temperature was measured in points
which lays on the center line of cylindrical specimens,
in distances (x = 0, 20, 38, 60, 76 mm) from heater.
The temperature was measured continuously.

The moisture was measured on the end of exper-
iment. The apparatus was dismantled without delay.
Each specimen was cut into six small cylinders and
the water content of each cylinder was determined.

4.3 Model of experimental device

Scheme of model of experimental device is shown on
figure 3. Mesh has107nodes and169 triangles. Third
virtual dimension of mesh, thickness of elements, is
29, 85 mm. So, volumes and masses of specimens
and heater are the same as volume and mass of parts
in original apparatus.

Material parameters of bentonite are taken from
[1], [2]. Values of parameters are:

• cv = 4200
1630Cb+ (1.38T + 732.5) [Jkg−1K−1]

• λ =

 0.57−1.28

1+e

(
( Cb
350 )−0.65

0.1

)
 + 1.28 [Wm−1s−1]

• χ = 0 [Jkg−1]
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• Da = 1.4e− 5 [m2s−1]

• γ = 2.5e−3 [1]

• ϕ = Cb
350 [1]

• τ = 6 [1]

• ε = 0.45 [1]

• ρ = 1630 [kgm−3]

Material parameters of copper are taken as stan-
dard. Values of parameters are:

• cv = 392.9 [Jkg−1K−1]

• λ = 385 [Wm−1s−1]

• χ = 0 [Jkg−1]

• Da = 0.0 [m2s−1]

• γ = 0.0 [1]

• ϕ = 0.0 [1]

• τ = 1 [1]

• ε = 0.0 [1]

• ρ = 8930 [kgm−3]

The initial conditions (temperature, saturation)
are applied by equation (5).

In time t = 0 s, the Neumann boundary condi-
tion (3) is applied on part of mesh, which represented
heater, red part on figure 3. Cooler and heat losses
through heat-insulation, yellow part on figure 3, are
represented by the Newton boundary condition (4).
ParameterσT is choosen as the best guess and was
improved by iterations.

All boundaries are closed for water vapors, the
Neumann boundary condition (3)q = 0 is applied.

The model solve this task for time interval
175 hours.

The temperatures in measured points are shown
in graph on figure 4. For the better illustration, the
graph is reduced only to100 hours.

The water content of specimens, on the end of
scenario (t = 175 hours), is shown in graph on fig-
ure 5.

5 Comparison of results and conclu-
sion

The graphic comparison of experimental data, col-
lected during experimentBenchmark 1.3, and data
obtained by model, see figure 4 and 5, shown that
the model, described in this article, solve the task of
coupled heat and moisture transport with diffusion on
porous media with good accuracy.

On the other hand it has to be said that this model
itself is not able to fully describe the processes in
a ”real life” bentonite buffer. What is missing is a
model, which will have to be done in the future, which
will deal with liquid underground water. This water
which is obviously present everywhere in the natural
conditions and has to be taken in consideration in fu-
ture research.
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Figure 4: Evolution of temperature

Figure 5: Water content profiles on the end (tend = 175 hours)
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