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Abstract: - Web proxy caching is used to improve the performance of the Web infrastructure. It aims to reduce 

network traffic, server load, and user perceived retrieval delays. The heart of a caching system is its page replacement 

policy, which needs to make good replacement decisions when its cache is full and a new document needs to be stored. 

The latest and most popular replacement policies like GDSF use the file size, access frequency, and age in the decision 

process. The effectiveness of any replacement policy can be evaluated using two metrics: hit ratio (HR) and byte hit 

ratio (BHR). There is always a trade-off between HR and BHR [1]. In this paper, using three different proxy server 

logs, we use trace driven analysis to evaluate the effects of different replacement policies on the performance of a Web 

server. We propose a modification of GDSF policy, GDSF#, which allows augmenting or weakening the impact of 

size or frequency or both on HR and BHR. Our simulation results show that our proposed replacement policy GDSF# 

gives close to perfect performance in both the important metrics: HR and BHR. 
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1  Introduction 
The enormous popularity of the World Wide Web has 

caused a tremendous increase in network traffic due to 

http requests. This has given rise to problems like user-

perceived latency, Web server overload, and backbone 

link congestion. Web caching is one of the ways to 

alleviate these problems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. 

Web caches can be deployed throughout the Internet, 

from browser caches, through proxy caches and 

backbone caches, through reverse proxy caches, to the 

Web server caches. 

     In our work, we use trace-driven simulation for 

evaluating the performance of different caching policies 

for Web proxy servers.  

     Cao and Irani have surveyed ten different policies 

and proposed a new algorithm, Greedy-Dual-Size (GDS) 

in [5]. The GDS algorithm uses document size, cost, and 

age in the replacement decision, and shows better 

performance compared to previous caching algorithms. 

In [4] and [12], frequency was incorporated in GDS, 

resulting in Greedy-Dual-Frequency-Size (GDSF) and 

Greedy-Dual-Frequency (GDF). While GDSF is 

attributed to having best hit ratio (HR), it having a 

modest byte hit ratio (BHR). Conversely, GDF yields a 

best HR at the cost of worst BHR [12].  

     In this paper, we propose a new algorithm, called 

Greedy-Dual-Frequency-Size#  (GDSF#), which allows 

augmenting or weakening the impact of size or 

frequency or both on HR and BHR. We compare 

GDSF# with common algorithms like GDS(1), GDS(P), 

GDSF(1), and GDSF(P). Our simulation study shows 

that GDSF# gives close to perfect performance in both 

the important metrics: HR and BHR. 

     The remainder of this paper is organized as follows. 

Section 2 introduces GDSF#, a new algorithm for Web 

cache replacement. Section 3 describes the simulation 

model for the experiment. Section 4 describes the 

experimental design of our simulation while Section 5 

presents the simulation results. We present our 

conclusions in Section 6. 

 

 

2 GDSF# Algorithm (Our Proposed 

Algorithm) 
In GDSF, the key value of document i is computed as 

follows[4] [12]: 
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     The Inflation Factor L is updated for every evicted 

document i to the priority of this document i. In this 

way, L increases monotonically. However, the rate of 

increase is very slow. If a faster mechanism for 

increasing L is designed, it will lead to a replacement 

algorithm with features closure to LRU. We can apply 

similar reasoning to si and fi. If we augment the 

frequency by using , ,…, etc. instead of  then the 

impact of frequency is more pronounced than that of 

size. Similarly, if we use , ,…, etc. or use 

log(si) instead of file size  si , then the impact of size is 

less than that of frequency [4].  

Extending this logic further, we propose an extension to 

the GDSF, called GDSF#, where the key value of 

document is computed as 

 
where λ and δ are rational numbers. If we set λ or δ 

above 1, it augments the role of the corresponding 

parameter. Conversely, if we set λ or δ below 1, it 

weakens the role of the corresponding parameter.  

     Therefore, we present the GDSF# algorithm as 

shown below: 

begin 

Initialize L = 0 

Process each request document in turn: 

let current requested document be i 

if i is already in cache 

 
else 

while there is not enough room in cache for p 

begin 

let L = min( ), for all i in cache 

evict i such that  = L 

end 

load i into cache 

 
end 

 

 

3  Simulation Model for the Experiment 
In case of proxy servers, all requests are assumed to be 

directed to the proxy server. When the proxy receives a 

request from a client, it checks its cache to see if it has a 

copy of the requested object. If there is a copy of the 

requested object in its cache, the object is returned to the 

client signifying a cache hit, otherwise the proxy records 

a cache miss. The original Web server is contacted and 

on getting the object, stores the copy in its cache for 

future use, and returns a copy to the requesting user. If 

the cache is already full when a document needs to be 

stored, then a replacement policy is invoked to decide 

which document (or documents) is to be removed. 

 

 

3.1  Workload Traces 
For Web proxy servers, we have used: Boston 

University Computer Science Department client traces 

collected in 1995; BU272 and BU-B19 [13] and one 

trace collected in 1998; BU98 [14] [15]. 

 

 

4. Experimental Design 
This section describes the design of the performance 

study of cache replacement policies. The discussion 

begins with the factors and levels used for the 

simulation. Next, we present the performance metrics 

used to evaluate the performance of each replacement 

policy used in the study. Lastly, we discuss other design 

issues regarding the simulation study. 

 

 

4.1  Factors and Levels 
There are two main factors used in the in the trace-

driven simulation experiments: cache size and cache 

replacement policy. This section describes each of these 

factors and the associated levels. 

 

4.1.1  Cache Size 

The first factor in this study is the size of the cache. For 

the proxy logs, we have used ten levels from 1 MB to 

1024 MB except in case of BU-B19 trace, we have a 

upper bound of 4096 MB. The upper bounds of cache 

size are chosen to represent an infinite cache size for the 

respective traces. An infinite cache is one that is so large 

that no file in the given trace, once brought into the 

cache, need ever be evicted. It allows us to determine the 

maximum achievable cache hit ratio and byte hit ratio, 

and to determine the performance of a smaller cache size 

to be compared to that of an infinite cache. 

 

 

4.1.2  Replacement  Policy 

In our research, we examine the following previously 

proposed replacement policies: GDS(1), GDS(P), 

GDSF(1), and GDSF(P). Our proposed policy GDSF# is 

also examined and evaluated against these policies. 

 

Greedy-Dual-Size (GDS): GDS [5] maintains for each 

object a characteristic value Hi. A request for object i 
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(new request or hit) requires a recalculation of Hi. Hi is 

calculated as  

 
L is a running aging factor, which is initialized to zero, ci 

is the cost to fetch object i from its origin server, and si 

is the size of object i. GDS chooses the object with the 

smallest Hi-value. The value of this object is assigned to 

L. if cost is set to 1, it becomes GDS(1), and when cost 

is set to p = 2 + size/536, it becomes GDS(P). 

 

Greedy-Dual-Size-Frequency (GDSF): GDSF [4] [12] 

calculates Hi as  

 
It takes into account frequency of reference in addition 

to size. Similar to GDS, we have GDSF(1) and 

GDSF(P).  

 

 

4.2  Performance Metrics 
The performance metrics used to evaluate the various 

replacement policies used in this simulation are Hit Rate 

and Byte Hit Rate.  

Hit Rate (HR) Hit rate (HR) is the ratio of the number 

of requests met in the cache to the total number of 

requests.  

Byte Hit Rate (BHR) Byte hit rate (BHR) is concerned 

with how many bytes are saved. This is the ratio of the 

number of bytes satisfied from the cache to the total 

bytes requested. 

 

 

5  Simulation Results 
This section presents the simulation results for 

comparison of different file caching strategies. 

Section 5.1 gives the simulation results for the GDSF# 

algorithm. Section 5.2 shows the results for proxy 

servers. 

     We show the simulation results of GDS(1), GDS(P), 

GDSF(1), GDSF(P), GDSF#(1), and GDSF#(P) for the 

proxy server traces for hit rate and byte hit rate. The 

graph for Infinite indicates the performance for the 

Infinite cache size. 

 

 

5.1  Simulation Results for GDSF# Algorithm 
In this section, we experiment with the various values of 

λ and δ in the equation for computing key value, 

 
to augment or weaken the impact of frequency and size 

in GDSF#. 

5.1.1  Effect of Augmenting Frequency in GDSF# 

If we add frequency in the GDS to make it GDSF, it 

improves BHR considerably and HR slightly. To check 

whether we can further improve the performance, we 

set λ = 2, 5, 10 with δ = 1 in the equation for Hi. 

Figures 1a and 1b show a comparison of GDSF(1) and 

GDSF#(1) with λ = 2, 5, 10 with δ = 1 for the BU272 

Web proxy trace.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1a: HR for GDSF# algorithm for BU272 trace 

(λ=2, 5, 10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1b: BHR for GDSF# algorithm for BU272 trace 

(λ=2, 5, 10) 

 

     The results indicate that augmenting frequency in 

GDSF# improves BHR in all the three traces but the 

improvement comes at the cost of HR. Again, we find 

that with λ = 2, we get the best results for BHR. We get 

the similar results for the remaining two traces. 

 

5.1.2  Effect of De-Augmenting Size in GDSF# 

We have seen that emphasizing frequency in GDSF# 

results in improved BHR. Now let us check the effect of 
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de-augmenting or weakening the size. For this, we set δ 

= 0.3, 0.6, 0.9 with λ = 1 in the equation for  Hi. Figures 

2a and 2b show a comparison of GDSF(1) and 

GDSF#(1) with δ = 0.3, 0.6, 0.9 with λ = 1 for the 

BU272 Web proxy trace.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2a: HR for GDSF# algorithm for BU272 trace 

(δ=0.3, 0.6, 0.9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2b: BHR for GDSF# algorithm for BU272 trace 

(δ=0.3, 0.6, 0.9) 

 

     The results are on expected lines. The effect of 

decreased impact of file size improves BHR across all 

the three traces. Again, it is at the cost of HR. 

Specifically, we get best BHR at δ = 0.3, and best HR at 

δ = 0.9.  

 

5.1.3  Effect of Augmenting Frequency & De-

Augmenting Size in GDSF# 

We have seen that emphasizing frequency and de-

emphasizing size in GDSF# results in improved BHR, at 

the cost of slight reduction in HR. Now the question is 

then whether we can achieve still better results by 

combination of both augmenting frequency and de-

augmenting size. For this, we try different combinations 

of λ and δ. We find that we get best results for both HR 

and BHR for the combination λ = 2 and δ = 0.9 for all 

the six Web traces. This combination shows close to 

perfect performance for both the important metrics: HR 

and BHR.  

     This is important result because as noted earlier, there 

is always a trade-off between HR and BHR [2]. 

Replacement policies that try to improve HR do so at the 

cost of BHR, and vice versa [5]. Often, a high HR is 

preferable because it allows a greater number of requests 

to be serviced out of cache and thereby minimizing the 

average request latency as perceived by the user. 

However, it is also desirable to maximize BHR to 

minimize disk accesses or outward network traffic.  

In the next sections, we use the best combination of λ = 

2 and δ = 0.9 in the equation for  Hi for GDSF# to 

compare the performance of GDSF# with GDS(1), 

GDS(P), GDSF(1), and GDSF(P). So, instead of 

denoting it as GDSF#(λ=2, δ=0.9), we will denote it as 

simply GDSF#. For the cost = 1, it will be denoted as 

GDSF#(1), and for packet cost (p = 2 + size/536), it will 

be denoted as GDSF#(P). 

 

 

5.2   Simulation Results for Web Proxy Servers 
In this section, we present and discuss simulation results 

for BU272, BU-B19, and BU98 Web proxy servers. 

 

5.2.1  Simulation Results for BU272  

Figures 3a and 3b give the comparison of GDSF# with 

other algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3a: Hit rate of BU272 trace 
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Fig. 3b: Byte Hit rate of BU272 trace 

 

     The results indicate that the HR achieved with an 

infinite sized cache is 42.23% while the BHR is 30.92% 

for the BU272 trace. Of the algorithms shown in Figure 

3, GDSF(1) had the highest HR followed by GDSF#(1). 

GDS(1) and GDS(P) had a significantly lower HRs. 

In case of BHRs, GDSF(P), and GDSF#(P) had the 

highest BHRs. However, GDSF# is optimized for both 

HR and BHR in case of BU272 trace. 

 

5.2.2  Simulation Results for BU-B19  

Figures 4a and 4b show the performance graphically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a: Hit rate of BU-B19 trace 

 

     The results indicate that the HR achieved with an 

infinite sized cache is 67.14% while the BHR is 48.21% 

for the BU-B19 trace. Of the algorithms shown in Figure 

4, GDSF(1) had the highest HR followed by GDSF#(1). 

GDS(1) and GDS(P) had a lower HRs. 

     In case of BHRs, GDSF#(P) had the highest BHR 

followed by GDSF(P). GDSF# is optimized for both HR 

and BHR in case of BU-B19 trace. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4b: Byte Hit rate of BU-B19 trace 

 

5.2.3  Simulation Results for BU98  

Figures 5a and 5b show the performance graphically.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5a: Hit rate of BU98 trace 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Fig. 5b: Byte Hit rate of BU98 trace 
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     The results indicate that the HR achieved with an 

infinite sized cache is 35.61% while the BHR is 35.81% 

for the BU98 trace. Of the algorithms shown in Figure 5, 

GDSF#(1) had the highest HR followed by GDSF(1). 

GDS(1) and GDS(P) had a considerably lower HRs. 

In case of BHRs, GDSF#(P) had the highest BHR 

followed by GDSF(P). However, like we noted earlier, 

GDSF# scores over all other algorithms in its optimized 

HR and BHR in case of BU-98 trace. 

 

 

6. Conclusions 
In this paper, we proposed a Web cache algorithm called 

GDSF#, which tries to maximize both HR and BHR. It 

incorporates the most important parameters of the Web 

traces: size, frequency of access, and age (using inflation 

value, L) in a simple way. 

     We have compared GDSF# with some popular cache 

replacement policies for Web proxy servers using a 

trace-driven simulation approach. We conducted several 

experiments using three proxy server traces. The 

replacement policies examined were GDS(1), GDS(P), 

GDSF(1), GDSF(P), GDSF#(1), and GDSF#(P). We 

used metrics like Hit Ratio (HR) and Byte Hit Ratio 

(BHR) to measure and compare performance of these 

algorithms. Our experimental results show that: 

 

1. The HRs for Web proxy servers range from 35 to 

68%, while BHRs range from 30 to 48% for the infinite 

caches. The values are consistent with the values 

reported in the literature [4] [5] [12] [16] [17] [18].  

 

2. The results also indicate that it is more difficult to 

achieve high BHRs than high HRs. For example, in all 

the three traces, the maximum BHR is always less than 

maximum HR.  

 

3. The results are consistent across all the three traces. 

GDSF# and GDSF show the best HR and BHR 

significantly outperforming other algorithms for these 

metrics. 

 

4. Replacement policies emphasizing the document size 

yield better HR, but typically show poor BHR. The 

explanation is that in size-based policies, large files are 

always the potential candidates for the eviction, and the 

inflation factor is advanced very slowly, so that even if a 

large file is accessed on a regular basis, it is likely to be 

evicted repeatedly. GDSF and GDSF# use frequency as 

a parameter in its decision-making, so popular large files 

have better chance of staying in a cache. In addition, the 

inflation or ageing factor, L is now advanced faster. 

GDSF and GDSF# shows substantially improved BHR 

across all traces.  

 

5. Similarly, replacement policies giving importance to 

frequency yield better BHR because they do not 

discriminate against the large files. These policies also 

retain popular objects (both small and large) longer than 

recency-based policies like LRU. However, normally 

these policies show poor HR because these policies do 

not take into account the file size which results in a 

higher file miss penalty. 

 

6. We analyzed the performance of GDSF# policy, 

which allows augmenting or weakening the impact of 

size or frequency or both on HR and BHR. Our results 

show that our proposed replacement policy gives close 

to perfect performance in both the important metrics: 

HR and BHR. 
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