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Abstract: We consider a Riemann problem for the isentropic gas dynamics equations in two space dimensions mod-
eling shock reflection. We write the problem in self-similar coordinates and, by analyzing a quasi-one-dimensional
Riemann problem at the reflection point, we derive regimes, in terms of initial data, for which solutions model the
phenomenon of regular shock reflection. This sets the stage for existence analysis of solutions to this Riemann
problem using the approach by Čanić, Keyfitz, Kim and Lieberman on the study of two-dimensional Riemann
problems for systems of conservation laws.
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1 Introduction
In this paper we are interested in understanding of
shock reflection phenomenon by considering the isen-
tropic gas dynamics equations. For an overview of
shock reflection from the experimental point of view,
we refer to [1] by Ben-Dor, and for some examples of
numerical studies, see [13, 14, 15, 19, 21, 22, 24].

The mathematical study of shock reflection via
analysis of special problems for systems of conser-
vation laws was employed in the case of steady and
unsteady transonic small disturbance equations, non-
linear wave system, pressure-gradient system, Euler
equations for potential fluids and gas dynamics equa-
tions (for example, see [4, 5, 6, 7, 8, 9, 10, 11, 16, 17,
18, 25, 26]). In these studies, the system of conserva-
tion laws is written in self-similar coordinates which
results in a mixed type system and a free boundary
problem for the reflected shock and the subsonic flow.
As the starting point, the initial data has to be carefully
chosen so that the solutions model a desired type of
reflection. This is done by resolving the interactions
in the hyperbolic region and by solving quasi-one-
dimensional Riemann problems (for introduction to
quasi-one-dimensional Riemann problems see [2, 3]
by Čanić and Keyfitz).

We consider a Riemann problem for the isen-
tropic gas dynamics equations and we derive regimes
for which regular reflection occurs. This sets the
stage for existence analysis of solutions to Riemann
problems for the isentropic gas dynamics equations
modeling regular reflection using the ideas by Čanić,

Keyfitz, Kim and Lieberman (for more details about
this approach, see [20] by Keyfitz). The main tools
in this approach are the theory of second order el-
liptic equations with mixed boundary conditions by
Gilbarg, Trudinger and Lieberman [12, 23] and vari-
ous fixed point arguments.

2 Isentropic gas dynamics equations
We consider the system of isentropic gas dynamics
equations in two space dimensions given by

ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2 + p)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

(1)

where (x, y, t) ∈ R×R×[0,∞), ρ : R×R×[0,∞) →
(0,∞) stands for density, u, v : R×R× [0,∞) → R

are velocities in x- and y-directions, respectively, and
p = p(ρ) : (0,∞) → R is pressure. We assume that
c2(ρ) := p′(ρ) is a positive and increasing function of
ρ. Following ideas in [4, 5, 6, 7, 8, 16, 17, 18], we
write system (1) in self-similar coordinates, ξ = x/t
and η = y/t, and we obtain

Uρξ + ρUξ + V ρη + ρVη + 2ρ = 0,
UUξ + pξ/ρ + V Uη + U = 0,
UVξ + V Vη + pη/ρ + V = 0,

(2)

where U := u − ξ and V := v − η stand for pseudo-
velocities. Moreover, from (2) we obtain a second or-
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der equation for density
(

(U2
− c2)ρξ + UV ρη + ρU

)

ξ

+
(

(V 2
− c2)ρη + UV ρξ + ρV

)

η

+ (UVη − V Uη)ρξ + (V Uξ − UVξ)ρη

+ 2(UξVη − VξUη)ρ = 0.

Note that given a constant state U 0 = (ρ0, u0, v0),
the above equation is hyperbolic outside of the sonic
circle C0 : (u0 − ξ)2 + (v0 − η)2 = c2(ρ0).

3 Riemann initial data
We consider system (1) with initial data posed in two
sectors (Figure 1)

U(x, y, 0) :=

{

U1 = (ρ1, 0, 0), x > sign(y) ky,

U0 = (ρ0, u0, 0), otherwise.
(3)

We assume that ρ0 > ρ1 are given arbitrarily, k > 0
will be specified later in terms of ρ0 and ρ1, and we
take

u0 =
√

1 + k2

√

[ρ][p]

ρ0ρ1
.

Here, [ · ] denotes the jump between states U 0 and U1.
With this choice of u0, each of the two initial discon-
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U1

U0
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Figure 1: The Riemann initial data.

tinuities x = ±ky, x ≥ 0, results in a shock and
a linear wave in the far field (Figure 2). More pre-
cisely, the one dimensional Riemann problem along
the discontinuity x = ky, y ≥ 0, results in a shock
S1 : x = ky +wt, with U 1 on the left and an interme-
diate state Ua = (ρ0, ua, va) on the right, and a linear
wave l1 : x = ky + At with U a on the left and U 0 on
the right. Using the Rankine-Hugoniot jump relations
we find

ua =
1

1 + k2

√

[ρ][p]

ρ0ρ1
, va = −kua,
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Figure 2: The solution in the far field.

w =
√

1 + k2

√

ρ0[p]

ρ1[ρ]
, and A = u0,

where the jump [ · ] is between states U 0 and U1. It
is easy to check u0 > ua and w > A. On the other
hand, the one-dimensional solution along x = −ky,
y ≤ 0, consists of a linear wave l2 : x = −ky + At
connecting U 0 to a state U b = (ρ0, ua,−va) and a
shock S2 : x = −ky + wt connecting U b to U1.

4 Parameter k

Suppose that densities ρ0 > ρ1 are fixed. In this sec-
tion we investigate values of the parameter k > 0 for
which the Riemann problem (1), (3) leads to regular
reflection. In our examples we assume that the pres-
sure is given by the γ-law relation, p(ρ) = ργ/γ, with
γ = 2, and we take ρ0 = 4 and ρ1 = 1. Let us denote
the projected intersection point of shocks S1 and S2

by
Ξs := (ξs, 0) = (w, 0),

and the sonic circles for states U 0, U1, Ua and U b by
C0, C1, Ca and Cb, respectively. We distinguish the
following three regions depending on the value of k.

• Region A : The value of k is such that the inci-
dent shock S1 (equivalently, S2) intersects either
the circle C1 or the circle Ca (equivalently, Cb).
In this case regular reflection cannot occur.

We claim that, given densities ρ0 > ρ1, there exists a
value kA(ρ0, ρ1) > 0, depending on ρ0 and ρ1, such
that for k ∈ (0, kA), the shocks S1 and S2 do not
intersect at the ξ-axis.

• Region B : The value of k is such that Ξs /∈
C1 ∪ Ca ∪ Cb. In other words, the point Ξs

is hyperbolic with respect to both U a and U b.
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However, for these values of k, we assume that
the quasi-one-dimension Riemann problem at the
point Ξs with states U b and Ua, on the left and on
the right, does not have a solution consisting of
two shocks. Therefore, regular reflection cannot
happen.

In order to solve the quasi-one-dimensional Riemann
problem at the point Ξs with states U b and Ua, on
the left and on the right, respectively, we first find the
shock polars for these two states. In general, using (2),
the Rankine-Hugoniot jump relations along the shock
η = η(ξ) between a fixed state U 0 = (ρ0, u0, v0) and
a state U = (ρ, u, v) are given by

[ρU ]dη = [ρV ]dξ,
[ρU2 + p]dη = [ρUV ]dξ
[ρUV ]dη = [ρV 2 + p]dξ,

(4)

where [ · ] stands for the jump between the two states.
We obtain

dη

dξ
=

U0V0 ±
√

c̄2(U2
0 + V 2

0 − c̄2)

U2
0 − c̄2

=: σ±(ρ), (5)

and
v(ρ) = v0 + p(ρ)−p(ρ0)

ρ0((u0−ξ)σ±(ρ)−v0) ,

u(ρ) = u0 − σ±(ρ)(v(ρ) − v0),
(6)

where
c̄2(ρ) := ρ[p]/(ρ0[ρ]).

(It is easy to show that c̄2(ρ) is an increasing function
of ρ). Therefore, given a state U 0 = (ρ0, u0, v0), the
states U = (ρ, u(ρ), v(ρ)), which can be connected to
U0 by a shock, satisfy (6), where σ±(ρ) is given by
(5). The signs + and − correspond to a +-shock and
a −-shock, respectively.

We consider states U a and U b and we plot the
shock polars S±(Ua) and S±(U b). The quasi-one-
dimensional Riemann problem at the point Ξs with
states U b and Ua, on the left and on the right, re-
spectively, has a solution consisting of two shocks
and an intermediate state if S+(U b) and S−(Ua) in-
tersect. (These two shocks are called the “reflected
shocks”.) Clearly, from the relation for u(ρ) in (6), the
intersections of projected shock polars S+(U b) and
S−(Ua) in the (ρ, v)-plane correspond to intersec-
tions of S+(U b) and S−(Ua) in the (ρ, u, v)-space.

Example 1. Let k = 1.3. We find Ξs /∈ C1 ∪Ca ∪Cb

and we plot the projections of the shock polars for U a

and U b in the (ρ, v)-plane in Figure 3. The projected
shock polars S+(U b) and S−(Ua) do not intersect,
implying that the considered quasi-one-dimensional
Riemann problem at the reflection point Ξs does not
have a solution consisting of two shocks and an inter-
mediate state.

2 4 6 8 10
Ρ

-4

-2

2

4

v

Figure 3: The projected shock polars S+(U b) and
S−(Ua) do not intersect.

• Region C : The value of k is such that shocks S1

and S2 intersect at the point Ξs and, moreover,
the quasi-one-dimensional Riemann problem at
Ξs has a solution consisting of two shocks and
an intermediate state.

Example 2. Let k = 1.455. We find Ξs /∈ C1 ∪ Ca ∪

Cb. We plot the projections of shock polars S±(U b)
and S±(Ua) in the (ρ, v)-plane and we note that
S+(U b) and S−(U a) intersect at exactly one point
(Figure 4)

UR := (ρR, uR, 0) = (10.1, 2.97802, 0).

Hence, a quasi-one-dimensional Riemann problem at
the point Ξs has a unique solution consisting of a
shock connecting the states U b and UR and a shock
connecting the states UR and Ua.

Given densities ρ0 > ρ1, we claim that there ex-
ists a value kC(ρ0, ρ1) such that for k > kC , the shock
polars S+(U b) and S−(Ua) intersect at two points

UR = (ρR, uR, 0) and UF = (ρF , uF , 0).

Let us assume ρR < ρF . Note that we also
have ρR, ρF > ρ0, by the geometry of shock po-
lars. Therefore, for k > kC , the considered quasi-
one-dimensional Riemann problem has two solutions.
Each solution consists of a shock connecting U b to an
intermediate state (UR or UF ) and a shock connecting
this intermediate state to U a.

The next question is whether the reflection point
Ξs is subsonic (i.e., inside the sonic circle) or super-
sonic (i.e., outside of the sonic circle) with respect to
the states UR and UF . We claim that Ξs is subsonic
with respect to the state UF for all k > kC , and that
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Figure 4: The projected shock polars S+(U b) and
S−(Ua) are tangent.

there exists a value k∗(ρ0, ρ1) such that Ξs is subsonic
with respect to the state UR if k ∈ (kC , k∗).

Example 3. Let k = 1.48. We depict the projections
of the shock polars S±(U b) and S±(U a) in the (ρ, v)-
plane in Figure 5 and find that S+(U b) and S−(Ua)
intersect at two points

UR = (9.669, 2.676, 0)

and
UF = (10.766, 3.324, 0).

We remark that the reflection point Ξs = (5.648, 0) is
subsonic with respect to both UR and UF .
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v

Figure 5: The projected shock polars S+(U b) and
S−(Ua) intersect at two points.

Example 4. Let us consider k = 2. The reflection
point Ξs is supersonic with respect to both states U a

and U b and, moreover, the shock polars S+(U b) and
S−(Ua) intersect (Figure 6) at two points

UR = (9.294, 1.776, 0)

and
UF = (16, 5.303, 0).

We further find that the reflection point Ξs =
(7.071, 0) is subsonic with respect to the state U F and
supersonic with respect to the state UR.

2.5 5 7.5 10 12.5 15
Ρ

-4

-2

2

4

v

Figure 6: The projected shock polars S+(U b) and
S−(Ua) intersect at two points.

In Figure 7 we depict the curves kA, kC and k∗ in
the case of γ-law pressure with γ = 2, and for den-
sities ρ0 and ρ1 such that ρ0/ρ1 ∈ (1, 8]. The region
A is below the curve kA, the region B is between the
curves kA and kC , and the region C is above the curve
kC . Hence, regular reflection occurs for the values
of k above kC . When k is between kC and k∗, then
both states UR and UF are subsonic with respect to
the point Ξs, and when k is above k∗, then the state
UR is supersonic and the state UF is subsonic.

Therefore, we distinguish between the following
two types of solutions.

• Given densities ρ0 > ρ1 and the parameter k ∈

(kC , k∗), the Riemann problem (1), (3) results in
strong (or transonic) regular reflection. The so-
lution at the point Ξs is either UR or UF , and
since the point Ξs is inside the sonic circles CR

and CF , the two reflected shocks are transonic
and curved. They do not exit the sonic circles
CR and CF due to causality and they also do
not enter the sonic circle C0 by the Lax entropy
condition. Hence, by writing the original Rie-
mann problem in (ξ, η)-coordinates, by resolv-
ing the interactions in the hyperbolic region and
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Figure 7: The curves kA, kC and k∗.

by solving the quasi-one-dimensional Riemann
problem at Ξs, we can reduce the original Rie-
mann problem to a problem for the nonuniform
subsonic flow in the domain bounded by the re-
flected shocks and the point Ξs. Moreover, this is
a free boundary problem since the position of the
reflected shocks is not known apriori and it de-
pends on the unknown subsonic flow. We claim
that the structure of the solution for ρ is as in Fig-
ure 8.
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Figure 8: Strong regular reflection.

• Given densities ρ0 > ρ1 and the parameter k >
k∗, we have two possibilities. If the solution

at the point Ξs is assumed to be UF , then the
solution again models strong regular reflection.
However, if we assume that the solution at the
point Ξs is UR, then since Ξs is supersonic with
respect to UR, we have that the two reflected
shocks are hyperbolic and rectilinear until they
intersect the sonic circle CR. After that they be-
come transonic and curved, and, again, they do
not exit the sonic circle CR, by causality, nor they
enter the sonic circle C0, by the Lax entropy con-
dition. Hence, the solution is equal to the con-
stant state UR in the region bounded by the rec-
tilinear part of the reflected shocks and the sonic
circle CR. The flow inside the region bounded by
CR and the curved part of the reflected shocks
is unknown. Since the position of transonic re-
flected shocks is also unknown, we again obtain
a free boundary problem. The structure of the so-
lution for ρ is depicted in Figure 9. This solution
models weak (or supersonic) regular reflection.
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Figure 9: Weak regular reflection.

5 Conclusion
In this paper we consider a sectorial Riemann prob-
lem for the two-dimensional isentropic gas dynamics
equations. By writing the problem in self-similar co-
ordinates, by resolving the interactions in the hyper-
bolic region and by solving a quasi-one-dimensional
Riemann problem at the reflection point, we derive
conditions on the initial data for which the solution
will give rise to strong and weak regular reflection.
Moreover, the original Riemann problem can be re-
duced to a free boundary problem for the reflected
shock and the subsonic flow in (ξ, η)-plane.

The author, in collaboration with Keyfitz and
Čanić, has started local analysis (near the reflection
point Ξs) of the free boundary problem arising in the
case of strong regular reflection. Our study follows
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the approach outlined in [20]; however due to compli-
cated nonlinear coupling of the isentropic gas dynam-
ics equations, novel techniques are needed to establish
the existence of the solution. We leave this analysis
for a future paper.
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