
SAT-Problems - New Findings

CHRISTIAN POSTHOFF
Department of Mathematics & Computer Science

The University of The West Indies
St. Augustine Campus

TRINIDAD & TOBAGO
email:cposthoff@fsa.uwi.tt http://www.uwi.tt/fsa/dmcs/computerscience/staff/cposthoff.html

BERND STEINBACH
Institute of Computer Science

Freiberg University of Mining and Technology
Bernhard-von-Cotta-Str. 2, D-09596 Freiberg

GERMANY
email:steinb@informatik.tu-freiberg.de http://www.informatik.tu-freiberg.de/index.html

Abstract : - SAT-problems in general and 3-SAT problems in particular are very important and interesting NP-complete
problems with many applications in different areas. In several previous papers, before all in [2] and in [5], we showed the use
of ternary vectors and set-theoretic considerations as well as binary codings and bit-parallel vector operations in order to solve
this problem. The approach does not use any of the classical search methods, it uses more constructive ways to build possible
solutions on the basis of partial solutions which are more or less easy to find. Experiments showed that this approach is very
competitive and efficient. After the parallelism of the solution process has been established on the register level, i.e. related
to the existing hardware, it could also be shown that it is very promising and efficient to extend the ideas and concepts to the
use of several processors working in parallel (see, for instance, [8]). This paper now presents some refinements of the existing
approaches with an overwhelming and very surprising increase of the efficiency of the algorithms and implementations. The
presentation relates to one processor, the transfer to a multi-processor system will be presented as soon as possible.

Key-Words: - SAT-problems, 3-SAT, bit-parallel vector operations, intersection, difference, sorting, efficiency.

1 Introduction

Boolean problems combine practical and theoretical as-
pects in a special way and can be considered as one of
the most important foundations of Computer Science and
its applications. Besides the theory of Boolean Algebras
and the Boolean Differential Calculus [5], certain Boolean
problems appear as key in complexity theory [7]. The
Boolean satisfiability problem (SAT) was the first known
NP-complete problem.

A decision problem is in the complexity class NP if
a non-deterministic Turing machine can solve it in poly-
nomial time. A decision problem is NP-complete if it is
in NP, and every problem in NP can be reduced [3] to
it by a polynomial-time transformation. And this is also
the bridge to many applications related to the design of
digital devices: the reduction of a real-world problem to
binary representations and the processing of these rep-
resentations. Any improvement of the basic algorithms
will also improve the efficiency of algorithms dealing with
many applications.

Stephen Cook proved that the Boolean satisfiability
problem is NP-complete [1]. This theorem was indepen-
dently proven by Leonid Levin [4] at about the same
time. Therefore it is called Cook-Levin’s Theorem. NP-
complete problems are the most interesting problems in
NP. In the context of the practical importance mentioned

above we present in this paper some new findings that
improve the already efficient algorithms further and al-
low the solution of many more and larger problems in a
very short or acceptable time.

2 Preliminaries

In order to make this note independently readable, we
summarize the concepts that have been used before. Let
x = (x1, · · · , xn), xi ∈ {0, 1,−}, i = 1, . . . , n. Then x is
called a ternary vector which can be understood as an
abbreviation of a set of binary vectors. When we replace
each − by 0 or 1, then we get several binary vectors
generated by this ternary vector. In this way, the vector
(0 − 1−) represents four binary vectors (0010), (0011),
(0110) and (0111). A list (matrix) of ternary vectors can
be understood as the union of the corresponding sets of
binary vectors.

A Boolean expression is said to be satisfiable if bi-
nary values can be assigned to its variables in a way that
makes the expression true or equal to 1 (0 and 1 are used
in hardware-related considerations, false and true more
in applications related to logics). Both a variable and
its negation are called literals. A disjunction of literals
is called clause. A Boolean expression is given in con-

junctive form if it only consists of clauses connected

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 339

by AND-operators. The check for satisfiability (SAT)
is NP-complete if the Boolean expression is given in a
conjunctive form having three or more variables in its
clauses. In the special case of the 3-SAT problem each
clause includes three literals.

If we consider now one clause of a 3-SAT problem,
such as C = x2 ∨ x3 ∨ x4, then we find all solutions of
C = 1 in the following way:

• If x2 = 1, then C = 1 independent on the other
variables. Hence, (−1 −−) describes a set of eight
solutions.

• If x2 = 0, then x3 = 1, i. e. x3 = 0 gives four more
solutions that are not covered by the previous case
and described by (−00−).

• If x2 = 0 and x3 = 1, then x4 must be equal to 1.
Thus, (−011) is another set of two solutions.

• There are no further solutions.

In this way we find three ternary vectors for the solu-
tion of C = 1, and they describe disjoint solution sets.
This simple mechanism avoids completely the search for
double solutions, one of the crucial points in this area.
The − in the first position indicates that in the context
of the problem a variable x1 is assumed to play a role.

If we consider now two clauses C1C2 = 1, then we
build the solution sets of C1 = 1 and C2 = 1 and find the
solution of C1C2 = 1 as the intersection of the respective
solution sets.

The intersection will be computed according to Table
1 which has to be applied in each component. The ∅ indi-
cates that the intersection is empty and can be omitted.

Table 1: Intersection of Ternary Values

xi 0 0 0 1 1 1 − − −
yi 0 1 − 0 1 − 0 1 −

xi ∩ yi 0 ∅ 0 ∅ 1 1 0 1 −

A sophisticated coding of the three values 0, 1 and −
allows the introduction of binary vector operations that
can be executed on the level of registers (32, 64 or even
128 bits in parallel). We use the coding of Table 2.

Table 2: Binary Code of Ternary Values

ternary value bit1 bit2
0 1 0
1 1 1
− 0 0

When the three-valued operations for the intersection
are transferred to these binary vectors, then the intersec-
tion is empty if

bit1(x) ∧ bit1(y) ∧ (bit2(x) ⊕ bit2(y)) 6= 0.

If the intersection is not empty, then it can be deter-
mined by the following bit vector operations:

bit1(x ∩ y) = bit1(x) ∨ bit1(y),

bit2(x ∩ y) = bit2(x) ∨ bit2(y).

Hint: ⊕ indicates the exclusive-or. Hence, by us-
ing some very fast and very simple bit vector operations
(available on the hardware level), we can find the solu-
tion sets of any SAT-equations, and especially of 3-SAT-
equations. In [2] this could be done for a maximum of
up to 280 variables in about 10 minutes.

3 The overlap of disjunctions

In the following we will see that the overlap of variables in
different disjunctions will be important for the growth of
intermediate results. The overlap in one variable is the
most important case, the overlap in two or even three
variables does not need special consideration, it shows
the same consequences.

Let us consider n variables. Then we have n sin-
gle positions for the overlap, the remaining n − 1 posi-

tions are available for 2 variables, hence, n

(

n − 1
2

)

first disjunctions. The second disjunction must use the
same position for the overlap, 2 more positions are for-

bidden, hence,

(

n − 3
2

)

possible second disjunctions.

Altogether we have

Ω1(n) = n

(

n − 1
2

) (

n − 3
2

)

=

n(n − 1)(n − 2)(n − 3)(n − 4)

4
≈ n5

possible pairs of disjunctions overlapping in one and
only one variable.

Including also the overlap in two or three variables,
we can find out by a detailed analysis that for n = 10
70.83% of the pairs of disjunctions show an overlap, and
for n = 20 still 40.26% of the pairs of disjunctions show
an overlap.

Now we will explore the effect of the overlap.
A. Two disjunctions, no overlap: nine orthogonal

solution vectors.

f(a, b, c, d, e, f) = (a ∨ b ∨ c)(d ∨ e ∨ f)

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 340

a b c d e f

1 − − − − −
0 1 − − − −
0 0 1 − − −

∩

a b c d e f

− − − 1 − −
− − − 0 1 −
− − − 0 0 1

=

a b c d e f

1 − − 1 − −
1 − − 0 1 −
1 − − 0 0 1
0 1 − 1 − −
0 1 − 0 1 −
0 1 − 0 0 1
0 0 1 1 − −
0 0 1 0 1 −
0 0 1 0 0 1

.

B.1 Two disjunctions, one overlap, the overlap

variable either non-negated in both disjunctions

or negated in both disjunctions: only five orthogonal
solution vectors.

f(a, b, c, d, e) = (a ∨ b ∨ c)(c ∨ d ∨ e)

a b c d e

− − 1 − −
1 − 0 − −
0 1 0 − −

∩

a b c d e

− − 1 − −
− − 0 1 −
− − 0 0 1

=

a b c d e

− − 1 − −
1 − 0 1 −
1 − 0 0 1
0 1 0 1 −
0 1 0 0 1

f(a, b, c, d, e) = (a ∨ b ∨ c)(c ∨ d ∨ e)

This case can be reduced to the previous case using
the substitution c = x which results in

f(a, b, x, d, e) = (a ∨ b ∨ x)(x ∨ d ∨ e),

with exactly the same results. For the orthogonal rep-
resentation the overlap variable has to be used first, the
other variables can follow in any order.

B.2 Two disjunctions, one overlap, the overlap

variable once negated and once non-negated: four
orthogonal solution vectors.

f(a, b, c, d, e) = (a ∨ b ∨ c)(c ∨ d ∨ e)

a b c d e

− − 1 − −
1 − 0 − −
0 1 0 − −

a b c d e

− − 0 − −
− − 1 1 −
− − 1 0 1

⇒

a b c d e

− − 1 1 −
− − 1 0 1
1 − 0 − −
0 1 0 − −

Again the overlap variable has to be used first, the
other variables can follow in any order.

The other overlap possibilities (overlap in two or even
three variables) including the consideration of different
possibilities of negated or non-negated variables also re-
sult in three or four vectors in the intersection.

A very efficient strategy can now be designed as fol-
lows:

1. Determine the frequency of each variable in the dif-
ferent clauses.

2. Sort the set of clauses according to these frequen-
cies.

One example of 50 variables and 218 clauses, for in-
stance, showed the following frequencies for x1, ..., x50:
x14 : 22, x49 : 19, x3 : 16, x22 : 11, . . . Hence, the
clauses have been sorted according to these frequencies:
first all clauses with x14 followed by all clauses containing
x49 etc. The experimental results showed an enormous
increase of the efficiency (see below).

4 Intersection versus Set

Difference

Now we consider the intersection as the main operation
of the approach. Let us look at an intermediate result
such as

A =

a b c d e

0 1 1 − −
1 0 − 1 −
1 1 − − 1
0 0 0 − −

,

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 341

and let D = (c ∨ d ∨ e) be the next disjunction to be
considered. According to our previous considerations we
get the solution set for D = 1 and the intersection A∩D

as follows: -

a b c d e

0 1 1 − −
1 0 − 1 −
1 1 − − 1
0 0 0 − −

∩

a b c d e

− − 1 − −
− − 0 1 −
− − 0 0 1

=

a b c d e

0 1 1 − −
1 0 1 1 −
1 0 0 1 −
1 1 1 − 1
1 1 0 1 1
1 1 0 0 1
0 0 0 1 −
0 0 0 0 1

.

Now we change the point of view. We consider vec-
tors that must be excluded from the space of possible
solutions: c = 0, d = 0, e = 0 will always result in
D = 0, these vectors have to be deleted from A, we
must determine A \ (− − 000). This can be done in a
very elegant and efficient way using again the orthog-
onality of ternary vectors. We take, for instance, the
first vector of A, (011 − −), and see immediately that
(011 −−) ∩ (−− 000) = ∅. The same applies to the sec-
ond and the third vector: these three vectors can remain
unchanged. Only the last vector must change, it will be
replaced by the two vectors (0001−) and (00001). The
vector (00000) has been excluded, and the representation
of the matrix for A ∩ D = A \ (− − 000) only needs 5
lines instead of 8:

a b c d e

0 1 1 − −
1 0 − 1 −
1 1 − − 1
0 0 0 − −

\ (−− 000) =

a b c d e

0 1 1 − −
1 0 − 1 −
1 1 − − 1
0 0 0 1 −
0 0 0 0 1

.

The efficiency of this ’tiny’ step will be seen when we
look at the experimental results.

5 Some Experimental Results and

Conclusions

The experiments have been very interesting and success-
ful, a broader presentation will be given at the Confer-
ence as well as on the Internet and by more detailed and
comprehensive publications. In order to be comparable,
two examples given in [10] have been chosen at random.
15 msec were the smallest time interval that has been
used for the measurements. We made 2 GB memory
available for the storing of clauses and the computation
of the solution.

The Example uf20-91 This example has 20 vari-
ables and 91 clauses.

Intersection
Maximum number of intermediate clauses: 4391.
Maximum at clause: i=22.
Computing time: 31 msec.

Difference
Maximum number of intermediate clauses: 2245.
Maximum at clause: i=22.
Computing time: 15 msec.

Figure 1 shows the size of the intermediate TVLs af-
ter the computation of each clause for both algorithms
using a linear scale.

The Example uf50-218 This example has 50 vari-
ables and 218 clauses.

Intersection
Maximum number of intermediate clauses: 54,860,864.
Memory overflow at clause i = 27.
Computing time until overflow: 40,781 msec.

Difference
Maximum number of intermediate clauses: 87,418,986.
Maximum at clause: i=57.
Computing time: 92,312 msec.

Intersection and Sorting
Maximum number of intermediate clauses: 63,368,192.
Memory overflow at clause i = 75.
Computing time until overflow: 45,375 msec.

Difference and Sorting
Maximum number of intermediate clauses: 525,660.
Maximum at clause: i=78.
Computing time: 843 msec.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 342

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60 70 80 90 100

rows

clause number

ISC-based
DIF-based

Figure 1: Comparison of the number of ternary vectors in the intermediate TVL using the ISC-based and the
DIF-based algorithm for the solution of the SAT benchmark uf20-01 that depends on 20 variables and 91 clauses,
on a linear scale of the rows.

Figure 2 shows the size of the intermediate TVL af-
ter the computation of each clause for both algorithms
a) without sorting and b) including sorting using a loga-
rithmic scale.

It is very easy now to see and to understand the ad-
vantage of sorting the clauses according to the frequency
of the variables in different clauses. And there can be no
doubt at all that in all these SAT-related problems the
use of the difference and even more the use of the differ-
ence together with the sorting of the clauses will increase
the efficiency in a way that is very hard to imagine. The
sorting alone created in this example an improvement
expressed by a factor of 110 in computing time and 166
in memory space. Further experiments will be published
as soon as possible. The transfer of these methods to a
system of processors working in parallel also has to be
considered as soon as possible.

References:
[1] St. Cook, The Complexity of Theorem Proving

Procedures. Proceedings of the Third Annual ACM
Symposium on Theory of Computing, Shaker
Heights, Ohio, United States, 1971, pp. 151-158.

[2] M. Johnson, Ch. Posthoff, TRISAT - A SAT -
Solver Using Ternary-Valued Logics. 14th Inter-
national Workshop on Post-Binary ULSI Systems,
Calgary, Canada, 2005.

[3] R.M. Karp, Complexity of Computer Computa-
tions. In R.E. Miller and J.W. Thatcher (editors):

Reducibility Among Combinatorial Problems, New
York, Plenum Press. 1972, pages 85–103.

[4] L. Levin, Universal’nye Perebornye Zadachi. Prob-
lemy Peredachi Informatsii 9 (3), 1973, pp. 265-
266. English translation: Universal Search Prob-
lems. In B.A. Trakhtenbrot: A Survey of Russian
Approaches to Perebor (Brute-Force Search) Algo-
rithms. Annals of the History of Computing 6 (4),
1984, pp. 384–400.

[5] Ch. Posthoff, B. Steinbach, Logic Functions and
Equations - Binary Models for Computer Science.
Springer, Dordrecht, The Netherlands, 2004.

[6] B. Steinbach, N. Kümmling, Effiziente Lösung hoch-
dimensionaler Boolescher Probleme mittels
XBOOLE auf Transputer. Transputeranwender-
treffen TAT’90, Aachen, Germany, 1990.

[7] I. Wegener, Complexity Theory - Exploring the Lim-
its of Efficient Algorithms. Springer, Dordrecht,
The Netherlands, 2005.

[8] Ch. Posthoff, B. Steinbach, A Multi-Processor Ap-
proach to SAT-Problems. 7th International Work-
shop on Boolean Problems, 19th - 20th of Septem-
ber 2006, Freiberg University of Mining and Tech-
nology, Freiberg, Germany, 2006.

[9] K. Zuse, The Computer - My Life. Springer-Verlag,
Berlin/Heidelberg, Germany, 1993. It is translated
from the original German edition: Der Computer -
Mein Lebenswerk. Springer, 1984.

[10] SATLIB - Benchmark Problems.
http://www.cs.ubc.ca/∼hoos/SATLIB/

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 343

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

0 50 100 150 200 250

rows

clause number

ISC-based
DIF-based

a)

1

10

100

1000

10000

100000

1e+006

1e+007

1e+008

0 50 100 150 200 250

rows

clause number

ISC-based
DIF-based

b)

Figure 2: Comparison of the number of ternary vectors in the intermediate TVL using the ISC-based and the
DIF-based algorithm for the solution of the SAT benchmark uf50-01 that depends on 50 variables and 218 clauses,
on a logarithmic scale of the rows: a) without soting, b) with sorting.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 344

