
Abstract: Unsolicited commercial email (UCE, spam), scam
and phishing emails make up for more than 90% of all emails
sent world-wide. Most anti spam methods known rely on fil-
tering emails. Meanwhile, even web browsers check URLs
against blacklists to avoid fraud. However, all those methods
are reactive, ergo they are only able to deal with known at-
tack patterns. A preventive approach is to stop spammers
from collecting mail addresses with their harvesters. Beside
obfuscation of email addresses, HTTP tar pits have proven
their efficiency in catching harvesters. This paper presents a
method to use HTTP tar pits to identify harvesters and how
to use this knowledge to dynamically block their access to
regular web pages.

Keywords: Spam, HTTP tar pit, proactive anti-spam-meas-
ures, access control, distributed

1. Introduction
By now, the vast majority of all emails are spam. It is just a
matter of the definition of spam and the time of measure-
ment, whether it is 82% [1] for 2004, 93% [2] in January
2005 or, as the German provider T-Online states, even 97% –
in early 2006 [3]. Although T-Online is likely to use a quite
general definition of spam that also includes viruses, worms
and Trojans, there is no doubt left that spam is a serious
thread to email communication.

2. Reactive methods
As of now, to reduce the percentage of unsolicited commer-
cial email (UCE) in any user's inbox, spam filters are imple-
mented. They usually try to filter spam using keywords,
spam signatures and heuristics like those used to identify vir-
uses, worms and Trojans. This is sufficient and likely to be
one of the few available methods to identify malware, be-
cause according to Rice's theorem [4], there is no program
that is able to predict what another program does. But first
spam is different to malware – it is easier individualised. And
second: There are also some preventive anti-malware meas-
ures, like installing safer operating systems, using techniques
like canaries [5], non-executable-flags for memory pages or
simply randomising the memory layout. Those techniques try
to deal with typical programming errors and to reduce their
impact on system security. All of them present additional
obstacles to attackers and thus increase security. The best
solution would be to educate all programmers so that they are
aware of the security risks resulting from security-unaware
programming.

Education would also stop spam – if people would finally un-
derstand that spam only exists because products advertised
therein are bought, the spam problem would be solved. But it
seems more realistic to educate programmers than to educate
users, as they seem to click on anything that might be attract-
ive to them. Therefore, technical methods to reduce spam are
urgently required.

However, filtering is reactive, it is based on an understanding
of how previous spam looked like. It is also a heuristic ap-
proach and therefore prone to a certain rate of bad guesses,
i.e. spam filters will always misidentify spam as ham, as the
opposite of spam is called, or vice versa. The later being the
worse alternative, as quite a lot of users trust in their spam
filter and do not manually check it for ham.

A better approach would be to identify bulk mailers' typical
behaviour and stop spam before it abuses resources on a mail
server. This is necessary because filtering also consumes
huge amounts of computing power. Current anti-spam appli-
ances run on high-end server hardware, equipped with double
multi-core-processors and gigabytes of RAM [6].

A more promising approach would be, if spammers were un-
able to find email addresses. If they do not know their vic-
tims, they cannot spam them. For this reason, [7] analysed
and tested several techniques to obfuscate email addresses on
web pages and proposed a HTTP tar pit to lock harvesters in.

3. Organisation of this paper
Section 4 gives an overview over existing anti-spam tech-
niques and explains why their efficiency is limited. Section 5
explains the principle of a HTTP tar pit and describes how it
could be combined with a SMTP tar pit to become even more
effective. In the next section 6, an analysis of how to use IP
addresses collected by those tar pits is presented. Then in
section 7, two implementations of an IP based filter on an
Apache web server are shown. Section 8 discusses how tar
pits could communicate with a blacklist database. In the last
section 9, we conclude and give an outlook on our ongoing
research.

4. Reactive anti spam techniques

4.1. Blacklisting
Probably the first anti-spam-filter was blacklisting bad
sender's “from”-addresses, a countermeasure spammers
evaded by using a faked “from”-address. The alternative to
identify ham is white listing, here, only known good senders

A secure and covert communication channel for HTTP tar pits to
implement dynamic web page blocks to bar spammer's harvesters

TOBIAS EGGENDORFER
Institut für Technik Intelligenter Systeme ITIS e.V.

An-Insititut der Universität der Bundeswehr München
Werner-Heisenberg-Weg 39

85579 Neubiberg
GERMANY

tobias.eggendorfer@unibw.de
http://www.unibw.de/tobias.eggendorfer/

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 394

are listed. This does make sense to reduce the risk of false
positives if combined with other spam filtering techniques
but is not the key to get rid of spam, as it inhibits new con-
tacts.

To resolve the problem of forged “from”-addresses, black-
listing was extended to list IP addresses from were spam is
sent and to disallow those machines to connect to a mail
server. This has been especially useful because spammers
used to use so called open relays, i.e. mail servers configured
to accept mail for any domain and to forward those messages
to the respective mail servers. They later also used so called
open proxies. Those are HTTP proxies allowing to push
SMTP-commands to a remote SMTP server and thereby ob-
fuscate the real senders IP address and identity.

When invented back in the late 1990s, those blacklists, often
called open relay blacklist, both helped filtering spam and
supported the demand of switching off those open relays. But
they were also known for having heavy side-effects: Almost
all important email providers have already been blacklisted
on at least some of the widely available blacklists [8][9][10].

Now, the increasing usage of so called zombie PCs, i.e.
mostly windows computers infected with worms, to send
spam [11] made those black lists more and more useless, be-
cause usually zombies do not have static IP addresses but dy-
namically assigned ones: Those machines are mainly PCs
used by individuals and are therefore connected via dial-in or
a DSL-line to the Internet. The usage of those zombies does
not require any special knowledge, because those “bot-nets”
are available for rent for comparable small amounts of
money [12], so it has evolved to be common practice.

Thus blocking spam based on the sender's IP requires either a
very dynamically changing blacklist to reflect the fast change
of IP addresses or to block entire subnets known to be used
by dial-in providers to prevent potential abuse. This again
has heavy side effects, because this also blocks thousands of
legitimate mail users that run their mail transfer agents
(MTA) on mostly Unix machines at home. With the increas-
ing use of bot-nets to send spam from, open relays are be-
coming less interesting to spammers, but are still in use.

4.2. Content Filtering
Another, well known and widely implemented way to filter
spam are content-filters that might be both applied to the
header and / or the body of a mail message. Some of those
filters are based on a “bad-word-list”, i.e. a list of words
which is likely to occur only in spam. Besides the well-
known pharmaceutical products, those lists often also include
phrases as for example “click here” considered to be typical
spam phrases. Modern content filters allow to weight their
bad list words and only consider a mail to be spam, if an
overall score computed from the individual word weights has
been reached. This is necessary because to different users the
same word might both be a typical spam indicator or a ter-
minus technicus used in daily work like “mortgage” for a
bank clerk or certain drugs trade names for physicians.

Bayesian filters implement a self learning mechanism to
identify typical spam words. They then calculate a probabil-
ity off the message being spam, based on what they learned.
However, they basically implement nothing else then a bad
and good word list.

All those bad word lists filters failed when, in early July
2006, spammers started to conceal their message in images

sent via email. Often, those images where cut in random
pieces and then readjusted using HTML tables or style sheets
[6][13].

Content filtering also includes to analyse the headers of a
mail message for implausible “received”-headers. Those
headers indicate the way the message took through the Inter-
net and are often forged to mislead both spam filters and anti-
spammers on their quest to identify spammers [14].

More advanced products also analyse the proportion of
HTML-tags to text or look for images loaded from external
web pages, so called web bugs, used to verify that a spam
message has been read [15]. Some even check for URLs
quoted in the message and compare them to a list of web
pages known to be spam-vertised [6]. Those lists are main-
tained the same way sender IP blacklists are.

Also those indicators for spam are usually weighted and a
score is computed. If the score is above a defined limit, the
message is considered to be spam. Good anti spam filters
again allow users to adjust this weighting mechanism accord-
ing to their needs.

Unfortunately, spammers know about those techniques and
register accounts with mail service providers offering spam
filters. They then test their spam against their mail filters and
fine tune it, until it passes through [16][17].

This is the reason, why filtering is always one step behind, no
matter how advanced content-filtering becomes [18].

4.3. Collaborative Filtering
Collaborative filtering is yet another approach to identify
spam: To do so, big mail providers analyse mails their cus-
tomers get and compare them to both mails to other custom-
ers and mails received on special honeypot addresses. This
requires the filter operator to either store incoming messages
for comparison or to compute a checksum over an incoming
message. To store entire messages requires huge storage ca-
pacities: A spammer might wait between delivering two
spam messages to different accounts at the same provider for
some time. According to a test, in only 92% of the cases, the
two messages were received within 15 minutes of each other
[19]. Therefore incoming messages should be stored and
delayed for at least 15 minutes to identify it with a certain
probability as a part of a spam run. Comparing each stored
message to an incoming message, also consumes computing
power and rises important privacy questions.

Using checksums is also difficult, as spam messages are
more and more individualised and therefore differ one from
another although they have basically the same content. Com-
pared to the usual requirement of cryptographically secure
checksum algorithms, i.e. checksums that change signific-
antly even on small alterations of the message [20], those
checksum algorithms required to compare mail messages
should remain constant on small alterations, but they should
also be secure enough to only identify messages with se-
mantically identical content and should not generate false
positives [21].

4.4. Grey listing
Collaborative filtering should implement a certain waiting
time to allow some messages out of a spam run to arrive.
This results in a delayed delivery of the message, the same as
it would with grey listing. Grey listing is to force the sending
MTA of a message to resend it after a short time.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 395

As of now, this solution is quite potent, as most spam is sent
through zombies. Those worms contain their own SMTP en-
gine, which is usually quite simple and only implements a
subset of SMTP. Most of them are still unable to handle the
temporary unavailable condition used in grey listing and
therefore consider this condition as a fatal error and stop de-
livery. Grey listing has two major disadvantages: It slows
email communication down and it is likely to be useless
when those worms will implement better SMTP-engines,
which is to be expected soon. As of beginning June 2006,
there are already anecdotal reports of bots being capable of
dealing with grey listing [22].

4.5. Authenticated SMTP
Another common suggestion is to fix SMTP's lack of authen-
tication, which most people believe to be the one and only
reason for spam. The basic concept is to add an additional re-
cord to the Domain Name Service (DNS) indicating which IP
addresses are allowed to send email for a certain domain
[23]. It implements some kind of reverse Mail Exchange
(MX) lookup, where a MX lookup is used to identify a do-
main's mail server to send mail to.

Unfortunately, this new technology breaks important and in-
tended email features. Email forwarding, used probably as
often as call forwarding, becomes very complex. Also using
a company's mail server to send private mails from with the
private mail address as sender address becomes impossible,
because the company's mail server is not listed as a trusted
relay in the private domain's DNS record. Nota bene, the
company's mail server does not need to be an open relay to
provide this functionality, as long as the user has an IP within
the range of IPs the server relays for.

The “Sender Policy Framework”-based (SPF) Sender-ID
technology discussed at MARID [24] was foredoomed for
using Microsoft's proprietary, licensed technology. Looking
at the described disadvantages of SPF and also Yahoo's com-
peting “Domain Keys”, it is likely, that it will fail too. Con-
sidering that spammers were among the firsts to implement
and use SPF [25][26][27], it offers no advantage over any
other spam filtering technology.

The problem with SPF is, that it only requires to register a
domain and list IP addresses that are allowed to send emails
with sender addresses containing that domain name. Spam-
mers register domains regularly to promote their products,
they often use so called “bullet proof”, i.e. spammer friendly
hosters to do so. Therefore, SPF neither helps to identify the
sender, although SPF advocates claim it.

Last but not least, all those changes to SMTP require a broad
installed base of mail servers supporting them. Besides being
hampered by competing standards, those changes to SMTP
need to be deployed world wide. Rough estimations based on
the amount of open relays world wide and their percentage of
SMTP servers indicate, that there is an installed base of at
least 22.5 million SMTP servers world wide [28], that all
need to be updated and registered. Compared to the simpler
task of just configuring a MTA to not be an open relay, in-
stalling those authentication enhancements to the protocol is
rather difficult.

Although since a few years most MTAs are non open relays
by default configuration, i.e. out of the box, still 1% of all
MTAs are open relays. Considering that open relays are
blacklisted and banned since at least ten years, world wide

adoption of any SMTP authentication scheme would require
at least ten years from when a suitable authentication stand-
ard emerged.

4.6. Stopping email address collection
Other anti spam techniques are based on an understanding of
how the spam business works. In [12] and [29] an ex-spam-
mer shared insights on how spammers organise their work.
According to those sources, collecting email addresses to
spam to and sending spam itself are two distinct spheres of
business.

By using Google or looking at ebay, it is easily verified, that
there are people selling mail addresses to spammers. There
are even spam mails advertising email addresses to spam to.
However, if spam is sent through zombies, the locally in-
stalled worms could search local hard disk drives for email
addresses and spam to them. Some worms actually offer this,
but the problem of worms infecting a computer is probably
easier addressed by the operating system manufacturer and is
not spam specific. The abuse of worms to send spam is only
a symptom of broad installed base of insecure computers.

Most email address vendors collect the mail addresses in two
simple ways: They either offer web pages where they ask
people to subscribe themselves and / or some friends with
their respective email addresses to receive either some kind
of information or join sweepstakes, or they collect email ad-
dresses from web pages using spidering technology known
from search engines. The programs they use to do so are
called “harvesters” or “email spider”, the later being their
providers' preferred term, and are easily available from major
download sites in the web.

In [7] several methods to prevent the collection of email ad-
dresses using different obfuscation techniques are discussed,
[30] analyses their efficiency. To offer a fast and easy to in-
stall solution, [31] proposes a way to automatically obfuscate
email addresses on both static and dynamically generated
web pages, thereby solving the problem to modify or redo
existing web pages.

Besides obfuscation of email addresses, it would be useful, if
harvesters could easily be identified and their access to web
pages might be blocked. If it is possible to do so, harvesters
would not find any useful piece of information on a web
page. A way to achieve this might be using access informa-
tion from HTTP tar pits.

5. HTTP tar pit
Their main intent is to bar harvesters from collecting mail-
addresses by trapping them in a tar pit. The basic concept is
to create random web pages containing links on the same or
other tar pits. This pollutes the list of web pages to visit the
harvester has and keeps the harvester returning and finally
staying in the tar pit. As soon as the harvester is caught, all of
it's resources are attracted to the tar pit, thereby preventing it
to visit any other web page and collect email-addresses there.

Setting up a functional and safe tar pit is not as easy as it
might seem at first glance: First, “honest” spiders, such as
GoogleBot, should be kept out. Second: If the tar pit pub-
lishes links to itself, they need to be different. And last but
not least the tar pit needs to make sure it is not hit by a denial
of service condition if a harvester runs in circles through the
site.

The first problem is solved by using the robots.txt-Standard

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 396

[32], which all serious spiders obey but harvesters ignore.

Publishing different links to the tar pit-script means to alias
all of those generated URLs to the same script. There are dif-
ferent approaches to do so: One would be to build a small
web server on its own to satisfy those requests, the other,
easier deployable solution is to use features of existing web
servers like Apache. Apache alone offers three ways to asso-
ciate one script with many URLs: mod_rewrite, mod_alias
and ErrorDocument. Each of them has its own specific ad-
vantages and disadvantages:

mod_rewrite for example sends a “Location”-header back to
the browser. This could betray the tar pit. mod_alias requires
access to the main httpd.conf, which is impossible if the tar
pit should be implemented on some kind of shared virtual
web server. By contrast, the ErrorDocument-directive is usu-
ally available through .htaccess-files at most providers. Here,
the tar pit has to take care of the HTTP status sent back,
which is no problem.

To solve the maximum load problem, again, different ap-
proaches exist. The probably most elegant way is to use sem-
aphores initialized with the maximum amount of parallel
threads to run [33]. This reduces busy-waiting-logic within
the tar pit, thus relieving the processor and is simple and effi-
cient.

A tar pit should not only have the harvester return to it every
few moments, but it should also slow down the connection,
thereby reducing download speed and attracting the harvester
even longer to it. A simple method is to slow down the con-
nection on the application level. A commonly used imple-
mentation is to deliver content character by character or line
by line sleeping for a few seconds between sending each.
This gives the impression of a very slow server, but if done
carefully, gives no hint on the existence of a tar pit.

Timing is crucial to this kind of slowdown: Some harvesters
do set very short default time-outs to avoid being caught in a
tar pit like this. Therefore, tar pits should be tested against
existing harvesters to identify those limits and adjust their
timing accordingly.

A very basic implementation of a HTTP tar pit using PHP4
has been published in [34], a little more elaborated solution
and first real-world test impressions have been presented in
[35]. The tar pit described there uses some further obfusca-
tion techniques: Some are using randomly generated sub do-
mains to give the impression of across-host-links and the use
of different domains and IP addresses to obfuscate it's exist-
ence even further.

Although in real-world experiments this tar pit proved to be
efficient, tests with off-the-shelf harvesters available in the
web gave some hints on how to modify the tar pit to be even
more effective. Most harvesters implement some kind of pro-
gress meter by listing the last email addresses found. The
first tar pit implementation did not deliver any email ad-
dresses. Therefore, a human operator could realise that his
harvester got caught by a tar pit. He could even blacklist the
tar pit and inform other spammers of its existence.

To have harvesters stick longer to the tar pit, the tar pit
should offer some email addresses to the harvester. But those
addresses need to be existent: Random addresses under ran-
dom domains might easily contain existing email addresses
belonging to someone else who then will receive spam.

The other downside to random addresses is the so called

bounce spam [36]. This is spam sent to a non-existent ad-
dress seeming to originate from another domain or email ad-
dress than the one the spammer has. For each undeliverable
spam message an error message is created and sent to the
supposed sender's address, and, if it is also non-existent, to
the postmaster of his domain.

Considering this, email addresses published by the tar pit
should be existent and a mail server should accept messages
to them. To achieve this, the authors suggested in [2] to use a
SMTP tar pit as pseudo-MTA for the HTTP tar pit.

6. Identifying harvesters with a tar pit
Due to previous experiments with HTTP and combined tar
pits, the test tar pits are heavily linked from many web pages
in the Internet. They therefore attract enough harvesters that
follow links on web pages. Humans are unlikely to accident-
ally follow a link to the tar pit, because web master have
been instructed to link them with a CSS-style “invisible”. If
for any reason a human would follow a link to it, he will
soon notice that the page he came across is not intended for
human visitors. Harvesters by contrast will stay in the tar pit,
as field experiments proved.

Therefore, the tar pit is a useful method to tell apart humans
from machines: As soon as a visitor stays for more than a
few visits in the tar pit, it is very likely to be a machine.

If the visitor is a machine, it did not obey the robots.txt
standard [11], [12], that protects good spiders from being
trapped in the tar pit. This is the method of choice to distin-
guish between search engines' spiders and spammers' har-
vesters.

To understand harvesters' behaviour, the log files of the tar
pits were analysed and evaluated. As expected, there were no
time patterns to be identified – harvesters seem to wait for a
random time between two visits and they also have different
length lists of pages to visit that also influence when they
will visit the next link to the tar pit in their list. The longer
harvesters have already been trapped in the tar pit, the more
frequent return visits become. Considering the links-to-visit-
list harvesters use, this is expected behaviour.

Accidental human visitors by contrast usually visit the tar pit
for less than an average of two links. Those that stayed
longer seemed to have analysed the tar pit's behaviour. This
at least is made plausible by looking at entry points har-
vesters used when visiting the tar pit: Some web masters who
linked the tar pit understood well how it worked and crafted
their own, specific links to it.

As harvesters' timing is unpredictable, but humans' is, the
first piece of information to identify a harvester is that it is
visiting the tar pit more than twice. If by this piece of inform-
ation, it was possible to tell apart humans from harvesters,
this could be used to block access to web pages for har-
vesters, at least for a certain time period.

An obvious, yet important requirement is, that humans
should not be blocked from visiting other web sites. Only
harvesters should. It might be helpful, that, if our assumption
drawn from the log file is true, human visitors who click on
more than one link in the tar pit are likely to be people who
try to understand how the tar pit works. Thus, it might be
safe to also assume that those people will understand why
their access to other web pages has been blocked for a certain
time.

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 397

So the real problem are “one link visitors” who by accident
came across the harvester trap. To avoid them to be banned
from web page access for too long, the ban is imposed de-
pending of the amount of visits during a certain time period.

Another important piece of information derived from log file
analysis was that a non negligible fraction of harvesters are
operated from dynamic dial-in IPs, i.e. their IP address is
changing at least every 24 hours. Therefore, it should be
avoided to block IP addresses for more than 24 hours, if,
after 24 hours after the first harvesting report from this ad-
dress has occurred, harvesting suddenly ceased.

To both accomplish the requirement not to block humans and
to only block dynamic IPs for the time harvesting occurs
from them, we suggest to calculate a ban time according to
Formula 1.

We suggest to first increase the block time until a certain
limit (m) of visits to the tar pit has been reported to prevent

accidental human visitors from being blocked for to long.
After m visits, access for the harvester's IP will be blocked
for the next 24 hours.

We added an additional check after 25 hours of the first har-
vesting report from an IP to unlist the IP if during the last
hour no harvesting activity was reported. If not, we added an-
other 24 hours of ban time for this IP. It would be tested
again after 24 hours. This is necessary to avoid dynamic IPs
to be blocked for too long.

7. Dynamically blocking the Harvesters
As soon as a harvester's IP has been identified, the harvester
could be disallowed access to web pages. To do so, different
methods exists: One is to totally ban this harvester from a
web page, i.e. showing it an error message. The other would
be to not only obfuscate mail addresses but to dynamically
totally remove them from a web site.

Although a thoroughly tested obfuscation algorithm might be
used, that has not been broken yet and is unlikely to be any
time soon [7], totally removing an address is for obvious
reasons even safer. Another advantage of this approach is be-
sides not displeasing visitors that accidentally clicked into a
tar pit, to obfuscate the obfuscation mechanism even more:
To spammers trying to investigate why their harvesters do
not find any email addresses any more, the web page presen-
ted looks rather unsuspicious. The small changes introduced
by totally removing mail addresses are not as obvious as an
error message would be.

By contrast, a total block reduces work load for the web
server if it was to produce complex dynamic web pages
whose content is of no use for harvesters. Adding to this, the
error message displayed could contain a random link to any
tar pit to send the harvester to. If the error message does not
contain any other links, the harvester does not add new links
to its list of links to visit. Thereby, the percentage of tar pit
links in its list grows, in turn helping to increase the tar pits
effectiveness and also protecting other web pages, that do not
implement the blocking mechanism, because the harvester is
busy working his way into the tar pit.

From our point of view, both approaches offer their specific
advantages and disadvantages, so it should be left to the local
administrator to choose which one is better suitable to the en-
vironment the web server runs in.

Based on the Apache output filter presented in [37] that
provided a solution to dynamically obfuscate email ad-
dresses, we propose an enhanced output filter able to look up
the client's IP in a database of known harvesters whether it is
listed. If a blocked IP has been identified, the module does
not only obfuscate email addresses, but removes them from
the web page.

Email addresses in “mailto:” links are replaced with a link to
a contact form. [7] also suggested methods to implement a
spammer save contact form, that avoids both abuse and the
harvesting of email addresses from the form. Both the URL
of the form and the text used to replace email addresses are
easily configurable.

The database used is populated with data from the combined
SMTP HTTP tar pit and regularly maintained in a way, that,
if an IP is found in the database, the output filter knows, that
this IP is to be blocked. This simplifies access rules and al-
lowed us to easily modify the ban regime during testing.

Instead of just removing email addresses, access to the web
server could be blocked for known harvesters. As soon as a
harvester tries to access a web page, an error message is dis-
played, indicating that the client's IP has been blocked be-
cause it was reported to take part in harvesting activity.

To do so, we implemented an Apache filter in Apache's URI
translation phase [38]. In this phase, the web server tests,
whether an URL is valid locally or needs some changes to be
made. If changes are necessary, they are done in a filter mod-
ule. Obviously, the simplest way to redirect a harvester to an
error page would be to change the URI to the URI of such an
error page. This is exactly what we did based on the client's
IP.

In our test setup, we stored the IP black list in a local
MySQL database. Without any optimisation of the database,
we were able to identify a performance reduction for data-
base access of approximately 1 ms. This test was run on an
Intel Centrino 735 MHz system with Linux, Fedora Core 2.
We tested the performance using Apache Bench, a bench-
mark programme included in Apache.

A delay of 1 ms is likely to be within the measuring tolerance
if the request is sent across an Internet connection and not
locally as we did. Obviously, the blocking mechanism is
constant in time, independent on how large the file sent by
the server would be.

With the output filter, the obfuscation overhead grows with
the size of the files. The additional overhead for database ac-
cess however remains constant with approximately 1 ms.

For our test setup, we had the tar pits store the IPs of har-
vesters accessing them in a MySQL database. A cron job on
the database server periodically removed IPs that were not
longer to be blocked.

8. Communication with the blacklist
database
In a test environment, a direct MySQL connection between
the tar pits and the black list database server might be accept-
able. For real world applications, security becomes an im-
portant requirement. As the tar pits are likely to be the first

Formula 1: Ban time

t bann ={n⋅0,25 for n≤m
24 else }[h]

t ban :ban time , n :visit count , m :maximum visits

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 398

aim to attack because they are exposed being the communic-
ation partner for harvesters, it is mandatory to also secure the
connection against attacks issued by a cracked tar pit. Be-
cause tar pits are likely to be installed on cheap virtual root
servers, that are often poorly maintained, crackers might also
have access to other machines in the same network as the tar
pit. This could allow them to eavesdrop communication
between the database server and the tar pits. Therefore, we
also suggest to steganographically hide their data exchange,
thereby reducing the probability of it being identified.

To increase security in a test setup, [37] first suggested to use
a SSH tunnel to connect to the MySQL server and limit the
MySQL user the tar pits use to insert privileges. A SSH tun-
nel has a few disadvantages: It needs to be monitored, be-
cause it might disconnect due to network time outs or other
problems. Therefore, the SSH connection needs to be estab-
lished without human interaction. For the required authentic-
ation upon reconnection, SSH keys without a pass phrase
might be used [39].

If the the database server had the tar pit's SSH keys in its loc-
al authorized keys file, anyone with access to the tar pit
could start a SSH connection to the database server. Al-
though the tar pit might be hardened by using a specific user
without any other rights but connecting to the server, a secur-
ity hazard is left over.

Therefore, reverse SSH tunnels are better. In this case, the
database server's key is stored in the tar pits' authorized keys
file, and the server connects to the tar pit. Then, a SSH tunnel
from the tar pit to the MySQL database is established. In this
case, if the tar pit is cracked by an attacker, one more
obstacle is added.

However, the attacker might use security flaws in MySQL,
be it privilege escalations for the MySQL user with insert
privileges, or be it something like a buffer overflow on the
MySQL network connector.

Putting all this together and adding that the tar pits are what
an attacker sees first, making them the preferred target for an
attack, we decided that allowing direct access to MySQL
from the tar pits is to dangerous from a security point of
view.

In [40] we analysed several other ways to allow a secure
communication between the tar pits and the database server.
Because direct database access is to dangerous, another pro-
tocol would be preferable. We came up with the idea to use
DNS to send IPs to the database.

From a steganographic point of view, this is a very promising
approach: A lot of web servers will automatically send a re-
verse lookup request for any client that connects to the ma-
chine. So a DNS reverse lookup is standard behaviour of a
web server and therefore unsuspicious to anyone sniffing
traffic.

Implementing DNS reverse lookups and answers to those re-
quests is also quite simple, because there are libraries both
for Perl [41] and PHP, the languages used for this project.

Unfortunately, DNS does not support any authentication for
client requests. [42] explicitly states that DNS is an open pro-
tocol, therefore, client requests do not need any authentica-
tion.

A first solution would be to only allow certain IPs to send
DNS requests that result in a blacklist update. But this would
require the database server to maintain a list of all tar pits'

IPs. This again is difficult, because our suggestion is to also
run those tar pits on DSL lines with dynamic IPs. This in-
creases their invisibility and make blacklisting them for har-
vesters more difficult.

Furthermore, DNS requests are usually send via UDP. A
UPD request's sender's IP is easily forged. Compared to TCP,
there is no need to take care of answer packets, because there
is no three way handshake required.

If it was feasible to use an IP lists as an access control to the
database server, the server should behave like a regular DNS
server, i.e. also send answers to requests from machines not
the tar pit IP list. This further obfuscates the double function
of this server. To increase the time and effort for IP forging,
tar pit's should use DNS via TCP.

To update the IP list, a tar pit should periodically establish an
IPsec connection to the database server. Then, tar pits are au-
thenticated and their IP is stored for a certain, short period of
time. This tar pit is then allowed to add harvester IPs with
TCP-DNS requests.

It is also possible, to directly send those DNS reverse lookup
requests over an IPsec secured channel. But this might be
more obvious to an attacker sniffing traffic from and to the
tar pit.

Although DNS seems to be the perfect way to steganograph-
ically hide the communication between the tar pit and the
database server, some small security issues are left.
However, we believe this to be the best available comprom-
ise between steganographic demands and security.

9. Conclusion
In this paper we propose to use combined HTTP and SMTP
tar pits to identify spammers' harvesters while they extract
email addresses from web pages. To protect regular web
pages from harvesters, we propose to Apache filter modules.
One of them totally blocks access for harvesters to web
pages, but might annoy humans still blacklisted because their
IP was in use by a harvester before, although our proposed
ban time algorithm reduces this risk to a bare minimum. The
total block also reduces work load on the web server, be-
cause dynamic web pages are not rendered for harvesters.

Our other example implementation modified an existing
email address obfuscation output filter module for Apache to
not only obfuscate email addresses but to remove them en-
tirely from the web page as soon as the client's IP is on the
list of harvesters. This has the advantage to neither disgruntle
human visitors nor give spammers any obvious clues.

Whichever method is chosen, the disappearance of an email
address from a web page reduces the amount of spam re-
ceived on this address by 50% within one year [43].

We currently researching even more secure and hidden ways
our tar pits could communicate with the black list.

References
[1] Gaudin, Sharon, Record Broken: 82% of U.S. Email is

Spam, http://itmanagement.earthweb.com/secu/art-
icle.php/3349921, 2004

[2] McGann, Rob, The Deadly Duo: Spam and Viruses,
January 2005,
http://www.clickz.com/stats/sectors/email/article.php/3
483541, 2005

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 399

[3] Kuri, Jürgen, T-Onine verzeichnet eine Milliarde Spam-
Mails pro Tag, http://www.heise.de/security/news/mel-
dung/72324.html, 2006

[4] Asteroth, Alexander; Baier, Christel, Theoretische In-
formatik, Pearson Studium, München, 2002

[5] Peikari, Cyrus, Chuvakin, Anton, Security Warrior.
Know Your Enemy, O'Reilly, Sebastopol, 2004

[6] Schulz, Carsten, Erstelllen eines Konzepts sowie
Durchführung und Auswertung eines Tests zur Bewer-
tung unterschiedlicher Spam-Filter-Mechanismen
bezüglich ihrer Langzeiteffekte Masterthesis, Uni-
versität der Bundeswehr München, Neubiberg, 2006

[7] Eggendorfer, Tobias, Methoden der präventiven Spam-
bekämpfung im Internet Masterthesis, Fernuniversität in
Hagen, München, Hagen, 2005

[8] McWilliams, Brian, SpamCop blocking some Gmail
servers,
http://spamkings.oreilly.com/archives/2006/01/, 2006

[9] Bleich, Holger, GMX landet auf Open-Relay-Blacklist,
http://www.heise.de/newsticker/data/hob-27.05.03-
000/, 2003

[10] Jacob, Philip, The Spam Problem: Moving Beyond
RBLs, http://theory.whirlycott.com/~phil/antispam/rbl-
bad/rbl-bad.html, 2003

[11] Kuri, Jürgen, Aufgedeckt: Trojaner als Spam-Roboter,
http://www.heise.de/newsticker/meldung/44869, 2004

[12] Spammer X, Talk by Spammer X in Proceedings of , ,
2006

[13] Graham-Cumming, John, Die Tricks der Spammer in:
Hackin9, Nr. 3 / 2004, 30 ff., Software-Wydawnictwo
Sp. z.o.o, Warschau, 2004

[14] Hochstein, Thomas, FAQ. E-Mail-Header lesen und
verstehen, http://www.th-h.de/faq/headerfaq.php3,
2003

[15] Davy, Michael, Feature Extraction for Spam Classifica-
tion Masterthesis, University of Dublin, Dublin, 2004

[16] McWilliams, Brian, Spam Kings. The Real Story Be-
hind the High-Rolling Hucksters pushing porn, pills,
and @*#?% Enlargements, OReilly, Sebastopol, 2005

[17] Wittel, Gregory L.; Wu, Felix S., On Attacking Statist-
ical Spam Filters in Proceedings of CEAS 2004,
Moutainview CA, 2004

[18] Gansterer, Wilfried et. al., Anti-spam methods - state of
the art in: , , 99, Institute of Distributed and Multimedia
Systems, University of Vienna, 2005

[19] Donelli, Giovanni, Email Interferometry in Proceedings
of Spam Conference 2006, Cambridge, MA, 2006

[20] Schwenk, Jörg, Sicherheit und Kryptographie im Inter-
net. Von sicherer E-Mail bis zur IP-Verschlüsselung,
Vieweg, Braunschweig, 2002

[21] Gray, Alan; Haahr, Mads, Personalised, Collabortive
Spam Filtering in Proceedings of CEAS 2004, Moutain-
view, CA, 2004

[22] Kühnast, Charly, Auftragskiller. Spam-Botnetz überfällt
Charly in: Linux Magazin 07/06, , 68 f., Linux New
Media, München, 2006

[23] Wong, M.; Schlitt, W., Sender Policy Framework (SPF)
for Authorizing Use of Domains in E-Mail, Version 1,
http://www.ietf.org/rfc/rfc4408.txt, 2006

[24] Lyon, J.; Wong, M., Sender ID: Authenticating E-Mail,
http://www.ietf.org/rfc/rfc4406.txt, 2006

[25] Sreekumaran, Jonathan, Those spammers are at it
again!,
http://www.techtree.com/techtree/jsp/article.jsp?article

_id=53789, 2004
[26] Varghese, Sam, Spammers ahead of the pack again,

http://www.smh.com.au/articles/2004/09/09/10945307
32236.html, 2004

[27] Claburn, Thomas, Spammers Hijack Sender ID,
http://www.informationweek.com/story/showArticle.jht
ml?articleID=47102042, 2004

[28] Eggendorfer, Tobias, Comparing SMTP and HTTP tar
pits in their efficiency as an anti-spam-measure in Pro-
ceedings of Spam Conference 2006, Cambridge, MA,
2006

[29] Spammer X, Inside the spam cartel. Why spammers
spam, Syngress Publishing, , 2004

[30] Eggendorfer, Tobias, Spam proof homepage design.
Methods and results of an ongoing study in Proceedings
of , Stuttgart, 2005

[31] Eggendorfer, Tobias, Dynamic obfuscation of email ad-
dresses - a method to reduce spam in Proceedings of
AUUG, Melbounre, 2006

[32] W3C, W3C Recommendations. Appendix B: Perform-
ance, Implementation and Design,
http://w3.org/TR/REC-html40/appendix/notes.html, o.
A.

[33] Tanenbaum, Andrew S., Modern Operating Systems,
Prentice Hall, Upper Saddle River, 2001

[34] Eggendorfer, Tobias, Ernte - nein danke. E-Mail-Ad-
ressenjägern auf Webseiten eine Falle stellen in: Linux
Magazin, , 108 ff., Linux New Media, München, 2004

[35] Eggendorfer, Tobias, Stopping Spammers' Harvesters
using a HTTP tar pit in Proceedings of AUUG 2005,
Sydney, 2005

[36] Graham-Cumming, John, Bounce Spams,
http://www.jgc.org/antispam/01312005-5decf14cb-
cec9687db9aa705789b55e0.pdf, 2005

[37] Eggendorfer, Tobias; Keller, Jörg, Dynamically block-
ing access to web pages for spammers' harvesters in
Proceedings of IASTED CNIS 2006, Cambridge, MA,
2006

[38] Stein, Lincoln D., MacEachern, Doug, Writing Apache
Module with Perl and C, O'Reilly, Sebastopol, 1999

[39] Anonymous, Maximum Linux Security. A Hacker's
Guide to protecting your Linux, Sams Publishing, Indi-
anapolis, 2001

[40] Tietze, Frank, Konzeption und Entwicklung einer
sicheren Infrastruktur für eine verteilte Blacklist Mas-
terthesis, Universität der Bundeswehr Neubiberg, Neu-
biberg, 2006

[41] Siever, Ellen; Spainhour, Stephen; Patwardhan, Nathan,
Perl in a Nutshell, O'Reilly, Köln, 2000

[42] Eastlake, Donald, DNS Security Extensions,
http://www.ietf.org/rfc/rvc2535.txt, 1999

[43] Eggendorfer, Tobias, Curbing spam. Fending off spam
before it reaches your filter in: Linux Magazine (Inter-
national Edition) 03/2007, , 25 ff., Linux New Media,
München, 2007

Proceeding of the 9th WSEAS Int. Conference on Data Networks, Communications, Computers, Trinidad and Tobago, November 5-7, 2007 400

