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Abstract: This paper is devoted to modeling and analyzing the behavior of a platoon thatis formed of semi-
automated vehicles and behaves like a virtual train in which the first vehicle is inthe leading position while the
other members of the train track just the preceding one. It is supposed thatthe dynamic models of the carts are
only approximately known but their loads and the nature of the coupling (connection) between the carts and their
lodas are completely unknown by the controller. It also is assumed thatvarious local tracking strategiescan be
applied between the members as“adaptive” and“non-adaptive” “distance and relative velocity tracking”, and
“acceleration tracking”. It is also assumed that the drives of the carts have limited driving forces that is modeled
in the simulations by the use of smooth sigmoid functions. The carts are approximately modeled as rigid bodies
while their loads are represented by masses connected to the appropriate carts by elastic springs having viscous
friction. The aim is to guarantee the possible smoothest motion for the last element of the train that may be
followed by various participants of the road communication whose driving comfort has to be kept in mind. This
task corresponds to the control of an imprecisely known strongly couplednonlinear system also having unmodeled
coupled internal degrees of freedom. It is shown via computer simulation that the novel, geometrically interpreted
adaptive control that in certain cases can be a simple alternative of Lyapunov’s2nd Method can successfully solve
this complicated task in decentralized manner, and can also reduce the joggingof the loads of the carts.

Key–Words:Coupled nonlinear dynamic systems, Adaptive control, Iterative learning,Banach spaces, Contractive
mapping

1 Introduction

A particular application of more or less automated ve-
hicles is the formation of platoons in which the main
control task is solved by the leading vehicle, while
the other members need not to be too intelligent: they
simply have to follow the preceding vehicle in the
convoy at a safe tracing/braking distance. They have
to stop when the preceding engines stop, and have
to come into motion when they come into motion.
From control technical point of view this task has the
specialty that the dynamic model of the members of
the platoon are only approximately known. The carts
may contain deformable loads as e.g. the liquid in an
oil tank that is in dynamic interaction with the tank
and the chassis carrying it. Besides the liquids, solid
loads may be also considered as rigid bodies con-
nected to the cart by some elastic, deformable junction
generally having dissipative features, too. Normally
the dynamical data of the loads are not known by
the controller of the platoon and instead of the com-
plicated task of developing/identifying their dynamic

models/parameters application of some adaptive con-
troller seems to be far more convenient and plausible
practical solution.

Another important aspect in connection with in-
complete modeling is the existence of two possible
alternative approaches: application of a single, com-
plex rough initial model containing each modeled de-
gree of freedom, or tackling the problem in a “decen-
tralized” manner in which certain subsystems are con-
trolled by independent controllers modeling and con-
trolling only certain degrees of freedom of the subsys-
tem in their care. In this case, for the local, decentral-
ized controllers, any dynamic coupling between the
locally controlled subsystems appears as external per-
turbation influencing the behavior of the subsystem
under their control. This problem was discussed in
details e.g. in a plenary speech by D’Andrea in con-
nection with the dynamic coupling of wings located
in each other’s vicinity in a wind channel [1]. On the
inspiration by D’Andrea’s paper similar effects were
investigated in connection with thecentralizedandde-
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centralizedapplication of a previous version of the ge-
ometrically interpreted adaptive control developed at
Budapest Tech [2]. The paradigm considered in these
investigations consisted of two cart plus double pen-
dulum systems coupled by an elastic spring. In each
subsystem one of the pendulums represented the un-
modeled internal dynamics. Besides that the coupling
between the two carts was also unknown by the con-
trollers. Heartened by the success of this approach in
the present paper a novel, two parametric fixed point
transformation based adaptive control is applied for
the purpose of controlling the platoon. The idea of
this new variant already was published in [3].

Besides reducing jogging or rumbling the loads
carried the really important factor is the nice, smooth,
conveniently followable behavior of the last vehicle
that actually is “visible” for the other participants of
public communication. In order to realize the above
outlined program the following factors have to be
taken into consideration: a) the controller to be de-
signed will work as that of aSingle Input – Single
Output (SISO)system, since the acceleration of the
last vehicle can be regarded as the“output” of the
controller, while the acceleration of the first one can
be manipulated as an“input” . However, in the reality
the convoy with an internal control is a “Multiple In-
put – Multiple Output (MIMO)” system in which cer-
tain internal degrees of freedom are not directly con-
trolled though their equations of motion are coupled
with that of the directly controlled ones. In the sim-
plest model in which the tracking rule takes into ac-
count only the distance and the1st time–derivative of
the distance between the neighboring carts this system
has high order: the2nd time–derivative of the trajec-
tory of the preceding cart is related to higher deriva-
tive of the trajectory of the tracing one. If the2nd time
derivative of the preceding cart is taken into account in
the tracing policy of the tracing one the whole system
remains a2nd order one.

Adaptivity can be built into this system in vari-
ous manners. The simplest possibility is to prescribe
a smooth nominal trajectory for the last cart, on which
basis a trajectory “shifted” by the sums of the safe
tracking distances can be prescribed for the1st cart.
Since the motion of the last cart is realized through
the chain of coupling between the platoon members
the motion of the leading vehicle can adaptively con-
trolled according to the observed motion of the last
one. This solution corresponds to the application of
a big adaptive loop for a system considered to be of
“SISO” nature in which considerable perturbation of
the trajectory of the leading cart can be expected due
to inappropriate modeling of the chain as a whole.
The operation of this construction expectedly can be
improved if similar adaptive loops are introduced in

decentralized manner to each cart within the train in
order to more precisely realize the prescribed tracking
algorithm. In the sequel at first the system‘s model
used in the simulations is described. Following that
simulation results are analyzed and conclusions are
drawn.

2 The Model of the Coupled Vehicles

Due to the communication possibility between the ve-
hicles and their local controllers the requirednominal
accelerationof thenth member[n > 1] is coupled to
the motion of the(n− 1)th one as follows:

δxn := xn − xn−1 + Ln, δẋn := ẋn − ẋn−1

FCalc
n = M̃n(µnẍn−1 − Pnδxn −Dnδẋn)

FDrive
n = hn

(
FCalc

n

)

ẍNom
n = (FDrive

n + FCont
n )/Mn

(1)

in whichLn (m) denotes the required constant nomi-
nal distance between the center points of thenth and
the (n − 1)th vehicles,Pn (s−2), andDn (s−1) are
the coefficients of the proportional and the derivative
coupling between these vehicles. Functionhn is a sig-
moid (i.e. strictly increasing function with upper and
lower bounds yielding zero output to zero input) that
represents the saturation in the available driving force
at the appropriate local controller using the modeled
mass̃Mn instead of the actual oneMn [both in (kg)].
The dimensionless parameterµn can take the value 1
if the acceleration of the preceding vehicle with re-
spect to an inertial frame (i.e. the Earth) is taken into
account, otherwise it takes 0. Phenomenologically (1)
can be realized: the actual distancexn−xn−1 (m) can
be measured by local sensors, whileẍn−1 (m · s−2) is
measurable by local accelerometers since the road is
fixed with respect to the Earth that approximately cor-
responds to an inertial system. The contact force aris-
ing due to the internal dynamic interaction between
the cart and its load also gives a contribution to it

FCont
n = kn(xLoad

n − xn) + νn(ẋLoad
n − ẋn) (2)

in which kn (N/m) andνn (Ns/m) denote the ap-
propriate spring and damping constants, respectively.

The acceleration of thenth load isẍLoad
n = − F Cont

n

MLoad
n

.
The existence of these terms is unknown by the con-
troller. In the case of some adaptive feedbackẍNom

n

can be replaced by adesired valueẍDes
n also con-

taining the feedback corrections. It is worth noting
that in (1) and (2) the various carts may have differ-
ent parameters not exactly known by the controller in
the leading vehicle determining̈x1. Application of an
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adaptive controller operating on the basis of an ap-
proximate uniform model that need not to be “pro-
grammed” in the stage of collecting the convoy would
also be a great practical advantage.

3 On the Possible Control Ap-
proaches

The complexity of the above task justifies seeking ap-
propriate nonlinear control approach. Due to space
limitation only very brief survey of the possible tradi-
tional approaches can be given.

3.1 Possible Traditional Approaches

In the possession of some analytical system model
Lyapunov’s2nd Method published in 1892 [4] is a
widely used technique in the analysis of the stabil-
ity of the motion of thenon-autonomous dynamic sys-
temsof equation of motion aṡx = f(x, t). It has the
great advantage that it does not require to analytically
solve the equations of motion. Instead of that uses
relatively simple estimations that can be done in the
case of strongly nonlinear systems, too. In spite of its
lucid and simple geometric interpretation this method
in the practice is rather an “art” than some “mechani-
cally applicable” tool. It requires not only great prac-
tice but also needs good intuition. Furthermore, the
computational need of realizing the method is not al-
ways negligible. The “traditional”Soft Computingap-
proaches are based onKolmogorov’s Approximation
Theoremelaborated for multiple variablecontinuous
functions[5]. In general these approaches suffer from
the“curse of dimensionality”that is related to the fact
that very extreme continuous functions exist. (The
first example of a function that everywhere is continu-
ous but nowhere is differentiable was given by Weier-
straß in 1872.) On these reasons in this paper alterna-
tive solutions are sought for.

3.2 The Excitation and Response Scheme
Combined with Fixed Point Transforma-
tion

It is worth noting that in this approach the desired re-
sponse can freely be defined on the basis of purely
kinematic considerations quite independently of the
dynamic behavior of the system.The task of realiz-
ing this desired response remains exclusively that of
the adaptive part of the controller. This feature of this
novel approach considerably differs from the char-
acteristics of the Lyapunov functions based methods
in which the dynamics of the error relaxation is an

“inseparable, organic part” of the control. Further-
more, since this approach is based on the application
of simple iterations, it cannot be formulated in sin-
gle closed analytical formula as some “control state-
ment” that normally occurs at the application of Lya-
punov’s method in whicḣV can simply be prescribed.
Instead of that an infinite series of cascade expres-
sionsh(h(h(...))) appears for which appropriate con-
vergence has to be guaranteed.

Each control task can be formulated by using the
concepts of the appropriate“excitation” Q of the con-
trolled system to which it is expected to respond by
some prescribed or“desired response”rd. The appro-
priate excitation can be computed by the use of some
inverse dynamic modelQ = ϕ(rd). Since normally
this inverse model is neither complete nor exact, the
actual response determined by the system’s dynamics,
ψ, results in arealized responserr that differs from
the desired one:rr ≡ ψ(ϕ(rd)) ≡ f(rd) 6= rd. It is
worth noting that the functionsϕ() andψ() may con-
tain various hidden parameters that partly correspond
to the dynamic model of the system, and partly pertain
to unknown external dynamic forces acting on it. Due
to phenomenological reasons the controller can ma-
nipulate or “deform” the input value fromrd so that
rd ≡ ψ(rd

∗
). Other possibility is the manipulation of

the output of the rough model asrd ≡ ψ(ϕ∗(rd)). In
the sequel it will be shown that forSISOsystems the
appropriate deformation can be defined as somePara-
metric Fixed Point Transformation.

For this purpose consider the simple iteration de-
scribed by (3) that is suggested by the similar triangles
of Fig. 1.

g(x|xd, D−,∆+) :=

= (f(x)−∆+)(x−D−)
xd

−∆+
+D−,

if f(x⋆) = xd then g(x⋆) = x⋆,

g′ = f ′(x) x−D−

xd
−∆+

+ f(x)−∆+

xd
−∆+

,

g′(x⋆|x
d, D−,∆+) = 1 + f ′(x⋆)

x⋆−D−

xd
−∆+

(3)

According to (3) and the caption of Fig. 1 it is
evident that the requested solutionx⋆ just is the fixed–
point of the functiong, and that by appropriately
choosing the initial model and the control parameters
D−, and∆+ the condition of|dg/dx| ≤ K < 1 can
be achieved in a vicinity ofx⋆. This region aroundx⋆

serves as a basin of attraction for the iterationxn+1 =
g(xn) since if a and b are within this region then
|g(a) − g(b)| = |

∫ b

a
g′dx| ≤

∫ b

a
|g′|dx ≤ K|a − b|,

i.e. g() realizes acontractive mappingresulting in a
Cauchy Sequencein the complete normed linear space
of the real numbers with the norm defined by the ab-
solute value. Really, for arbitrary natural numberL it
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Figure 1:Fixed point transformation forf ′(x) > 0 with param-
etersD− and∆+ belonging to Eq.(3); ifx⋆ > D−, xd < ∆+,
f ′(x⋆) > 0, and|f ′(x⋆)| is small enough, the iteration generated
by the functiong(x|xd, D−, ∆+) converges tox⋆

can be stated that

|xn+L − xn| = |g(xn+L−1) − g(xn−1)| ≤ ...
≤ Kn|xL − x0| → 0 as n→ ∞

,

(4)
therefore the sequence{xn} must converge to a limit
valuec. This limit value evidently must be equal to
the fixed pointx⋆ since|g(c) − c| ≡ |(g(c) − xn) +
(xn−c)| ≤ |g(c)−xn|+|xn−c| = |g(c)−g(xn−1)|+
|xn − c| ≤ K|c− xn−1| + |xn − c| → 0 asn → ∞.
For utilizing this convergence in the adaptive control
it is just enough to prescribe some appropriatedesired
responseon the basis of simple kinematical consider-
ations. If the variation ofxd in time is far slower than
the speed of convergence of the above iteration the
idea ofComplete Stabilitycan similarly be applied as
e.g. in the case of fast real-time image processing [7],
and a good adaptive tracking control can be achieved.
(More precisely, within one control cycle only one
step of iteration can be executed.) This expectation
is also supported by the results of previous investiga-
tions made in connection with less lucid fixed–point
transformations [8]. In the sequel this idea will be
used in the proposed adaptive control of the platoon.

4 Computational Results

The desired distance between the platoon members
(totally 4 carts) was set to 6 (m). The control had the
PD-type feedback for the last cart asẍd

4 = ẍNom
4 (t)+

Pcontrl(x
Nom
4 (t)−x4(t))+Dcontrl(ẋ

Nom
4 (t)− ẋ4(t))

with Pcontrl = 0.3 (1/s2) andDcontrl ≈ 5.477 (1/s)
that guarantees oscillation–free tracking. The carts
had the mass ofMn = 1200 (kg), the loads had
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Figure 2: The trajectories to be traced by the members of the
platoon vs. time (LHS), and the sigmoid function used for mod-
eling saturation of the drives (RHS)

MLoad
n = 200 (kg) masses, each. The springs be-

tween the loads and the carts hadkn = 300 (N/m)
spring constants andνn ≈ 346 Ns/m damping co-
efficients. The model values werẽMn = 500 (kg),
and the control rule for tracking the preceding carts
hadPn = 0.4 (s−2) andDn ≈ 6.325 (s−1), each. It
is worth noting that keeping the cart–load displace-
ments within realistic limits very stiff springs with
very strong viscous damping had to be supposed. The
adaptive fixed–point transformation in each run had
the parameters asD− = −20 and∆+ = 80 [both
in (m/s2)], both for the “big” adaptive loop directly
connecting to each other the motion of the first and
the last carts, and for the internal loops of the decen-
tralized controllers. The internal adaptive loops were
used in each result presented, the qualifiers as“adap-
tive” and“non-adaptive” concern only the big exter-
nal loop. The trajectories to be traced as well as the
nature of the sigmoid function modeling saturation is-
sues are described in Fig. 2. They contain flat parts,
and sharply accelerating/decelerating stages, too. In
each case investigated within the scaling of this chart
only minimal differences can be observed, therefore
in the sequel the tracking errors will be used instead
of the counterparts of this chart.

As it can well be seen in Fig. 3 the worst result is
obtained in the case of the“non-adaptive distance and
relative velocity control”as it was evidently expected.
Due to the exisence of the decentralized internal adap-
tive loops of the individual carts, there is no significant
difference between the2nd (“adaptive distance and
relative velocity control”) and the3rd (“non-adaptive
acceleration control”) rows results that can be simply
understood: when the outer adaptive loop is switched
off just the acceleration of the last cart is prescribed
for the leading one. Since the internal adaptive loops
guarantee precise acceleration tracking the proper ac-
celeration of the last cart is guaranteed, too. The situa-
tion was quite different when no internal decentralized
adaptive loops were in use. Regarding the2nd row,
when the precise distance and relative velocity track-
ing also is guaranteed by the internal adaptive loops,
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Figure 3: The tracking error vs. time (LHS), and the phase
space (RHS) of the motion of the last cart (No. 4) for“non-
adaptive distance and relative velocity control”(1st row), “adap-
tive distance and relative velocity control”(2nd row), “non-
adaptive acceleration control”(3rd row), and“adaptive accel-
eration control” (4th row)
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Figure 4: Time-averaged absolute values of the load accelera-
tions vs. time:“non-adaptive distance and relative velocity con-
trol” (upper left),“adaptive distance and relative velocity con-
trol” (upper right),“non-adaptive acceleration control”(lower
left), and“adaptive acceleration control”(lower right)
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Figure 5:The load–vehicle contact forces vs. time (LHS), and
the phase space (RHS) of the motion of the first cart for“non-
adaptive distance and relative velocity control”(1st row), “adap-
tive distance and relative velocity control”(2nd row), and“adap-
tive acceleration control”(3rd row)

this simple strategy yields good results, too. However,
the best result is obtained for the“adaptive accelera-
tion control” (4th row).

The time-averaged absolute values of the accel-
erations of the loads with respect to an inertial frame
are depicted in Fig. 4 according to which the“adap-
tive acceleration tracking”seems to be the superior
solution. The details described on Fig. 5 substantiate
the same observation by displaying the contact forces
and the phase space of the motion of the leading cart.

Alternative way for describing jogging of the
loads is chsoen in Fig. 6 in which the phase spaces
of the cart–load relative motions became better by the
fully adaptive control. It reveals that fine adaptivity
reduces the unnecessary push–pull sections that can
excite the coupled, directly not controlled internal de-
grees of freedom.

5 Conclusions
In this paper approximate modeling and adaptive con-
trol of platoons equipped with various internal track-
ing strategies were presented. It was shown that by
introducing nonlinear saturation of the forces of the
drives to represent their limited capacities this sys-
tem becomes a strongly coupled, partially and inac-
curately modeled nonlinear system within which cou-
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Figure 6: Phase spaces of certain load-vehicle relative mo-
tions for “non-adaptive distance and relative velocity control”
(1st row), “adaptive distance and relative velocity control”(2nd

row), and“adaptive acceleration control”(3rd row)

pled internal degrees of freedom unknown by the con-
troller can be excited. To develop an adaptive control
for such a system various traditional theoretical possi-
bilities were pondered or considered.

Due to its simplicity a novel adaptive controller
developed at Budapest Tech in the recent years was
proposed. As an alternative of Lyapunov’s2nd

Method this controller transforms the control task into
a fixed point problem of a contractive map. It is well
known that in complete linear metric spaces the iter-
ations generated by a contractive map converge to its
fixed point. The control algorithm corresponds to ex-
ecuting exactly one iterative step within each control
cycle. It was found that the use of decentralized lo-
cal controllers and a single big adaptive loop resulst
in nice and precise control of this system.

In the further research investigation of the dy-
namic asymmetries present in the platoon would be
expedient.
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