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Abstract: The recurrent Neural network capable to provide the Boolean factor analysis of the binary data sets of
high dimension and complexity is applied to roll-call voting problem. The method of sequential factor extraction,
based on the Lyapunov function is discussed in deep. Efficiency of this attempt is shown on simulated data and on
real data from Russian parliament as well.
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1 Introduction

Theoretical analysis and computer simulations per-
formed in (5) revealed that Hopfield-like neural net-
works are capable of performing boolean factor anal-
ysis signals of high dimension and complexity. Factor
analysis is a procedure which maps original signals
into the space of factors. The principal component
(PC) analysis is a classical example of such mapping
in the linear case. Linear factor analysis implies that
each original case can be presented as

X = FS + ε (1)

where F is a matrix N×L of factor loadings, S is
a vector of factor scores and ε an error. Each compo-
nent of S gives contribution of corresponding factor
in the original signal. Columns of loading matrix F
give vectors presenting corresponding factors in the
signal space. Below namely these vectors are termed
factors. Mapping of original space to the factor space
means that signals are represented by vectors S in-
stead of original vectors X. Dimensionality of vec-
tors S is much less than dimensionality of signals X.
Thereby factor analysis provides high compression of
original signals.

Boolean factor analysis implies that a complex
vector signal has a form of the Boolean sum of
weighted binary factors:

X =
∨

Slf l. (2)

In this case, original signals, factor scores and
factor loadings are binary and mapping of original sig-
nal to the factor space means citation of factors that
were mixed in the signal. The mean number of factors
mixed in the signals we term signal complexity C.

For the case of large dimensionality and com-
plexity of signals it was a challenge (5) to utilize for
Boolean factor analysis the Hopfield-like neural net-
work with parallel dynamics. Binary patterns X of the
signal space are treated as activities of N binary neu-
rons (1 - active, 0 - nonactive) with gradually rang-
ing synaptic connections between them. During the
learning stage patterns Xm are stored in the matrix
of synaptic connections J′ according to correlational
Hebbian rule:

J ′
ij =

M∑
m=1

(Xm
i − qm)(Xm

j − qm), i�=j, J ′
ii = 0, (3)

where M is the number of patterns in the learning

set and bias qm =
N∑

i=1
Xm

i /N is the total activity of

the m-th pattern. This form of bias corresponds to the
biologically plausible global inhibition being propor-
tional to an overall neuronal activity.

Additionally to N principal neurons of Hopfield
network described above we introduced one special
inhibitory neuron activated during the presentation of
every pattern of the learning set and connected with all
principal neurons by bidirectional connections. Pat-
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terns of the learning set are stored in the vector J′′ of
the connections according to Hebbian rule:

J ′′
i =

M∑
m=1

(Xm
i − qm) = M(qi − q), (4)

where qi =
M∑

m=1
Xm

i /M is a mean activity of i-th

neuron in the learning set and q is a mean activity of
all neurons in the learning set. It is also supposed that
excitability of the introduced inhibitory neuron de-
creases inversely proportional to the size of the learn-
ing set being 1/M after storing of all its patterns.

Due to the Hebbian learning rule (3), neurons
which represent one factor and therefore tend to fire
together, become more tightly connected than neurons
belonging to different factors, constituting attractor of
network dynamics. This property of factors is a base
of the used two-run procedure of factor search. Its
initialization starts by presentation of random initial
pattern Xin with kin = rinN active neurons. Activ-
ity kin is supposed to be much smaller than activity
of factors. On presentation of Xin, network activity
X evolves to some attractor. The evolution is deter-
mined by the parallel dynamics equation in discrete
time. At each time step:

Xi(t + 1) = Θ(hi(t) − T (t)), Xi(0) = Xin
i ,

i = 1, · · ·, N,(5)

where hi are components of the vector of synaptic
excitations

hi(t) =
N∑

j=1

J ′
ijXj(t) − (1/M)J ′′

i

N∑
j=1

J ′′
j Xj(t), (6)

Θ is step function, and T (t) is activation thresh-
old. The first term in (6) gives synaptic excitations
provided by the principal neurons of Hopfield network
and the second one by the additional inhibitory neu-
ron. The use of the inhibitory neuron is equivalent to
the substraction of (1/M)J ′′

i J ′′
j = M(qi − q)(qj − q)

from J ′
ij . Thus (6) can be rewritten as hi(t) =

N∑
j=1

JijXj(t) where J = J′ − MqqT, q is a vector

with components qi − q and qT is a transposed q.
As shown in (8) the replacement of common connec-
tion matrix J by J, first, completely suppressed two
global attractors which dominate in network dynam-
ics for large signal complexity C, and second, made

the size of attractor basins around factors to be inde-
pendent of C.

At each time step of the recall process the thresh-
old T (t) was chosen in such a way that the level of the
network activity was kept constant and equal to kin.
Thus, on each time step kin ”winners” (neurons with
the greatest synaptic excitation) were chosen and only
they were active on the next time step. To avoid uncer-
tainty in the choice of winners when several neurons
had synaptic excitations at the level of the activation
threshold, small random noise was added to the acti-
vation threshold of each individual neuron. The am-
plitude of the noise was put to be less than the smallest
increment of the synaptic excitation given by formula
(6). This ensured that neurons with the highest exci-
tations were kept to be winners in spite of the random
noise be added to the neurons’ thresholds. Noise to
individual neurons was fixed during the whole recall
process to provide its convergence. As shown in (5),
this choice of activation thresholds allows for stabi-
lization of the network activity in point or cyclic at-
tractor of length two.

When activity stabilizes at the initial level of ac-
tivity kin, kin + 1 neurons with maximal synaptic ex-
citation are chosen for the next iteration step, and net-
work activity evolves to some attractor at the new level
of activity kin + 1. Then level of activity increases to
kin + 2, and so on, until number of active neurons
reaches the final level rfN with rf > p. Thus, one
trial of the recall procedure contains (rf − rin)N ex-
ternal steps and several steps inside each external step
to reach some attractor for fixed level of activity.

At the end of each external step the relative Lya-
punov function was calculated by formula

Λ = XT (t + 1)JX(t)/(rN), (7)

where XT (t+1) and X(t) are two network states
in cyclic attractor (for point attractor XT (t + 1) =
X(t) ). The relative Lyapunov function is a mean
synaptic excitation of neurons belonging to some at-
tractor at the end of the external step with k = rN
neurons.

Attractors with the highest Lyapunov function
would be obviously winners in the most trials of the
recall process. Thus, more and more trials are re-
quired to obtain new attractor with relatively small
value of Lyapunov function. To overcome this prob-
lem the dominant attractors should be deleted from
the network memory. The deletion was performed
according to Hebbian unlearning rule by substraction
ΔJij , j �= i from synaptic connections Jij where

ΔJij =
η

2
J(X)[(Xi(t − 1) − r)(Xj(t) − r) +
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+(Xj(t − 1) − r)(Xi(t) − r), (8)

J(X) is the average synaptic connection between
active neurons of the attractor, X(t− 1) and X(t) are
patterns of network activity at last time steps of itera-
tion process, r is the level of activity, and η is an un-
learning rate. For point attractor X(t) = X(t−1) and
for cyclic attractor X(t − 1) and X(t) are two states
of attractor.

There are three important similarities between the
described procedure of Boolean factor analysis and
linear PC analysis. First, PC analysis is based on the
same covariation matrix as connection matrix in Hop-
field network. Second, factor search in PC analysis
can be performed by the iteration procedure similar to
that described by (5) and (6) but binarization of synap-
tic excitations by the step function must be replaced
by their normalization:Xi(t+1) = hi(t)/|h(t)|. Then
iteration procedure starting from any random state
converges to the eigenvector f1 of covariation matrix
with the largest eigenvalue Λ1. Just this eigenvector
is treated as the first factor in PC analysis. Third, to
obtain the next factor the first factor must be deleted
from the covariation matrix by the substraction of
Λ1f1fT

1 , and so on. The substraction is similar to Heb-
bian unlearning (8).

However, Boolean factor analysis by Hopfield-
like network has one principal difference from linear
PC analysis. Attractors of iteration procedure in PC
analysis are always factors while in Hopfield-like net-
works the iteration procedure can converge to factors
(true attractors) and to spurious attractors which are
far from all factors. Thus, two main questions arise in
view of Boolean factor analysis by Hopfield-like net-
work. First, how often would network activity con-
verge to one of the factors starting from random state?
Second, is it possible to distinguish true and spurious
attractors when network activity converges to some
stable state? Both these questions are answered in the
next Section.

There are many examples of data in the sciences
when Boolean factor analysis is required (1). In our
previous papers (6),(7) and (8) we performed it for
analysis of textual data. Here we apply our method to
the data for Russian parliament voting. The results are
described in Section 3.

1.1 Artificial Signals
To reveal peculiarities of true and spurious attrac-
tors we performed computer experiments with artifi-
cial signals. Each pattern of the learning set is sup-
posed to be a Boolean superposition of exactly C
factors and each factor is supposed to contain ex-
actly n = pN 1-s and (1 − p)N 0-s. Thus, each

factor f l∈ BN
n and for each pattern of the learning

set, vector of factor scores S ∈ BL
C where BN

n ={
X|Xi ∈ {0, 1},

N∑
i=1

Xi = n

}
. We supposed factor

loadings and factor scores to be statistically indepen-
dent. As an example, Fig. 1 demonstrates changes of
relative Lyapunov function for N = 3000, L = 5300,
p = 0.02 and C = 10. Recall process started at
rin = 0.005.

0,01 0,02 0,03
0,2

0,4

0,6

0,8

1,0

l

r

Fig. 1 Fig.1. Relative Lyapunov function λ in dependence on the

relative network activity r. The data were normalized to the mean

of Lyapunov function for true attractors at r = p.

Trajectories of network dynamics form two sepa-
rated groups. As shown in Fig. 2, the trajectories with
higher values of Lyapunov function are true and with
lower ones are spurious. This Figure relates values of
Lyapunov function for patterns of network activity at
points r = p to maximal overlaps of these patterns
with factors. Overlap between two patterns X1 and
X2 with p active neurons was calculated by formula

m(X1,X2) =
1

Np(1 − p)

N∑
i=1

(X1
i − p)(X2

i − p)

By this formula overlap between equal patterns is
equal to 1 and mean overlap between independent pat-
terns is equal to 0. Patterns with high Lyapunov func-
tion have high overlap with one of the factors, while
patterns with low Lyapunov function are far from all
the factors. It is shown that true and spurious trajec-
tories are separated by the values of their Lyapunov
functions. In Figs 1 and 2 the values of Lyapunov
function are normalized by mean value of this func-
tion over true attractors at the point r = p.

The second characteristic feature of true trajecto-
ries is the existence of a kink at a point r = p where
the level of network activity coincides with that in fac-
tors (see Fig. 1). When r < p the increase of r re-
sults in almost linear increase of the relative Lyapunov
function. Increase of r occurs in this case due to join-
ing of neurons belonging to the factor that are strongly
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Fig. 2 Values of normalized Lyapunov function in relation to over-

laps with the closest factors. It is shown that true and spurious

attractors can be easily separated due to a large gap between dis-

tributions of values of Lyapunov function.

connected with other neurons of factor. Then join-
ing of new neurons results in proportional increase of
mean synaptic excitation to the active neurons of fac-
tor that is just equal to their relative Lyapunov func-
tion. When r > p the increase of r occurs due to join-
ing of some random neurons that are connected with
factor by week connections. Thus, the increase of the
relative Lyapunov function for true trajectory sharply
slows and it tends to the values of Lyapunov function
for spurious trajectories.

The third characteristic feature of true trajectories
which allows for their distinction from spurious tra-
jectories, lies in the behavior of their activation thresh-
olds. Activation thresholds T at the final states of ex-
ternal steps are shown in Fig. 3 for the same network
parameters as in Fig. 1.

Initially activation thresholds for true attractors
are larger in comparison with spurious ones. However
at the point r = p they sharply drop to the level of spu-
rious attractors. This behavior is originated from the
well known fact (see, for example, (8) ) that during ac-
tivation of the fragment of one of the stored patterns
the distribution of synaptic excitations has two sepa-
rated high and low modes: high - for neurons belong-
ing to the pattern and low - for neurons not belonging
to it. The mean of the high mode increases propor-
tionally to the size of the fragment and the mean of the
low mode is close to zero. When r < p fragments of
stored patterns are activated along the true trajectories.
Then activation thresholds are inside the high mode.

0,01 0,02 0,03
10

20

30

40

50

T

r

Fig. 3 Fig.3. The change of activation threshold T along the recall

process. Notice the drop of activation threshold at the point r =

p. r = p.

The mean of high mode increases when r increases
since r is the relative size of activated fragment of the
stored pattern. Consequently the activation thresholds
increase with r. However when the stored pattern is
activated totally (r = p), the activation threshold has
to jump to the low mode to activate additional neurons
not belonging to the pattern as r continues to increase.
The use of these three features of true trajectories pro-
vides reliable recognition of factors. This statement
was clearly confirmed in our previous papers (6), (7)
and (8) where our method was performed for analy-
sis of textual data. Here we apply it for analysis of
parliament voting.

2 Analysis of Parliament Voting

The analysis was performed for results of roll-call
votes in Russian parliament in 2004 (9). Each vote
is considered as binary vector with component 1 if
the correspondent deputy voted affirmatively and 0
negatively. The number of deputies (consequently
the dimensionality of signal space and network size)
amounts 450.

The number of votes during the year amounts
3150. Fig. 4 shows Lyapunov function along trajec-
tories starting from 1500 random initial states. All
these states converge to four trajectories. Two of them
have obvious kinks and therefore were identified as
two factors. The factor with highest Lyapunov func-
tion contains 50 deputies and completely coincides
with the fraction of Communist Party (CPRF). An-
other factor contains 36 deputies. All of them be-
long to fraction of Liberal-Democratic Party (LDPR)
which contains totally 37 deputes. Thus one of the
members of this fraction fell out of the corresponding
factor. Pointed kinks at the corresponding trajectories
give evidence that these fractions are the most disci-
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pline and their members vote coherently.
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l

number of active neurons

Fig. 4 Relative Lyapunov function λ for parliament data in depen-

dence on the number of active neurons. Thick points are klinks of

the first and second factors.

Fig. 5 demonstrates trajectories after deleting of
the two factors. Starting from 1500 initial states they
converge to only two trajectories. One of them has
a kink but it is not so strict as for CPRF and LDPR
factors. We supposed that the point where the second
derivative of Lyapunov function by k has maximum
by absolute value is the third factor. The factor con-
tains 37 deputies. All of them belong to the fraction
”Rodina” which contains totally 40 deputes. Thus 3
of its members fell out of the factor. The fuzziness of
kink at the trajectory gives evidence that this fraction
is not so homogeneous as two first ones and actually
the fraction split at two fractions in 2005.

0 20 40 60 80
0

50

100

150

l

number of active neurons

Fig. 5 The same as in Fig. 4 after deleting two first factors. Thick

point is klink of third factor.

Matching of neurons along the second trajectory
in Fig. 5 with the list of deputes showed that it cor-
responds to the fraction ”United Russia” (UR). This
fraction is the largest and contains totally 280 deputes
but it is less homogeneous. Therefore Lyapunov func-
tion along the trajectory is low and it has no kink at
all.
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0

50

100
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number of active neurons

Fig. 6 The same as in Figs. 4 and 5 after deleting three first fac-

tors.

Fig. 6 shows trajectories of neurodynamics after
additional deleting the third factor from the network.
The remaining two trajectories contain only members
of UR. The states of different trajectories do not in-
tersect, so the UR fraction is evidently divided to two
subfractions.

3 Conclusion

Hopfield-like neural network is capable of perform-
ing Boolean factor analysis of the signals of high di-
mension and complexity. In this case analysis of a
voting. But it is suitable for much complicated task
analysis. In our previous papers we showed its high
efficiency in analysis of textual data. Here its ability
is demonstrated in the field of politics. More detailed
here used method description can be found in work
(2; 3; 4). The idea of the method is to exploit the
well known property of the network to create attrac-
tors of the network dynamics by the tightly connected
groups of neurons. We supposed, first, that each topic
is characterized by the set of specific words (often
called concepts) which appear in the relevant docu-
ments coherently and, second, that different concepts
are presented in documents in random combinations.
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