
Implementation of a Cryptographic Co-processor

A.P. KAKAROUNTAS, H. MICHAIL

Dpt. of Electrical & Computer Engineering

University of Patras

University Campus, Patras, GR-26500

GREECE

{kakaruda, michail}@ece.upatras.gr

Abstract: - In this paper a high-speed cryptographic co-processor, named HSSec, is presented. The core

embeds two hash functions, SHA-1 and SHA-512, and the symmetric block cipher AES. The architecture of

HSSec renders it suitable for widely spread applications with security demands. The presented co-processor

can be used inevery system integrating standards such as IPSec or the upcoming JPSec and P1619. The main

characteristic of the proposed implementation is common use of the available resources, to minimize further

area requirements. Additionally the cryptographic primitives can operate in parallel, providing high throughput

whenever needed. Finally the system can operate in ECB or CBC modes. The HSSec co-processor has

relatively small area and its performance reaches 1 Gbps (AES, SHA-1 and SHA-512) for XILINX’s Virtex II

FPGA family.

Key-Words: - Cryptography, Block cipher, Hash function, Embedded computing, Processing core,

Authentication

1 Introduction
Software implementations of cryptographic

algorithms cannot provide the necessary

performance when large amounts of data have to be

moved over high speed channels or store data in

high-capacitance storage devices. Thus, leading

service providers turn to hardware solutions aiming

to high performance and competitive characteristics

for their products. However, available cryptographic

cores hardly meet these specifications, especially for

applications requiring throughput over the 1 Gbps.

Protocols such as IPSec [1], JPSec [2] and the

upcoming IEEE P1619 [3] require solutions that can

serve almost real-time system demands.

 This race for high-speed cryptographic

implementations was the motivation for the

implementation of a High-Speed Secure (HSSec)

co-processor. The HSSec core is a crypto-system

that provides encryption/decryption using the widely

used symmetric block cipher Rijndael [4], described

in [5]. The HSSec embeds AES-128 and SHA-1 and

SHA-512, which are fully described in Secure Hash

Standard [6].

 Every attempt until now to implement a core

combining the latter algorithms was based on the

use of existing separate cores [7–12]. However, each

core is optimized for use as stand-alone, resulting in

bulky implementations with low performance. The

proposed co-processor exploits characteristics of the

cryptographic algorithms. Additionally, HSSec

allows concurrent operation of AES and SHA,

resulting in parallel processing of a packet (or image

frame). The modes of operation [13] are EBC

(Electronic Code Book) and CBC (Cipher Block

Chaining), and CFB and OFB are supported. The

core is fully programmable making it suitable for

use with a general purpose processor. In section 2,

the implementation of AES-128, SHA-1 and SHA-

512 is prsented. In section 3, the architecture of the

proposed co-processor is presented. In section 4,

details of the implementation of HSSec are offered.

Finally, conclusions are offered in section 5.

2 Exploration of SHA and AES
The HSSec, as it was mentioned until now, allows

the parallel operation of three cryptographic

primitives: AES-128, SHA-1 and SHA-512. The

first step during development of the HSSec was to

explore the three cryptographic primitives and find

common characteristics that can help design and

optimization process. Below the three algorithms are

presented and at the end their characteristics are

highlighted.

2.1 SHA-1 exploration
SHA-1 is the most commonly used hash function

along with MD4-MD5 hash functions. SHA-1 may

be used to hash a k-bits message, where 0 < k < 2
64
.

During pre-processing phase the message is padded

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 160

and parsed into 512-bit message blocks, which are

used to generate the message schedule Wt s. SHA-1

requires 80 cycles to produce the 160-bit message

digest. Each cycle requires the previous rounds

results, Wt, as well as constant values Kt. The rounds

of SHA-1 differ by the applied non-linear function

ft. There are in total four non-linear functions, f1(0 ≤

t ≤ 19), f2(20 ≤ t ≤ 39), f3(40 ≤ t ≤ 59), f4(60 ≤ t ≤

79).

2.2 SHA-512 exploration
SHA-512 may be used to hash a k-bits message,

where 0 < k < 2
128
. During pre-processing phase the

message is padded and parsed into 1024-bit message

blocks, which are used to generate the message

schedule Wt. SHA-512 requires 80 cycles to produce

the 512-bit message digest.

Fig. 1 Partially unrolled SHA-1 operation block

(two operations per cycle).

 Each cycle requires the previous rounds results,

Wt, as well as constant values Kt. Contrary to SHA-

1, all the operation blocks are identical. An

interesting proposal to implement small-sized high-

speed hash functions is presented in [15]. It is based

on pre-computing values with no dependencies and

use them later in the operation block. This design

approach when applied to the SHA-512 operation

block, increases its throughput by 30% with

negligible area overhead. The final implementation

requires a padding memory of 1024-bits, eight

temporal registers (64-bit) to store the intermediate

hash values and sixteen temporal registers (32-bit) to

store the message schedule Wt.

2.3 AES-128 exploration
The AES algorithm is a round-based, symmetric

block cipher. It processes data blocks of fixed size

(128 bits) using cipher keys of length 128, 196 or

256 bits. HSSec embeds the AES-128 because it is

the most popular variant of the algorithm. The

algorithm can be split in three processes:

Padding The 128-bits of the plaintext are

aligned in the States matrix.

Key expansion The initial 128-bit cipher key has to

be expanded to eleven round keys of same length.

The first round key is the cipher key (RoundKey0)

and all subsequent round keys are produced when a

function is applied to the previously generated round

key.

Encryption AES performs a number of

transformations to the plaintext, and a 128-bit output

block (called ciphertext) is produced as a result.

 A variety of implementations can be found in the

IP market and the international literature. Two

works are of special value for the HSSec

implementation. In [16] a highly regular architecture

of AES-128 is given. However, the resulted

throughput doesn’t meet the need for high

performance. Also, the architecture cannot be easily

modified to co-exist with SHA-1 and SHA-512

cores. However, it served as the cornerstone of the

HSSec architecture. In [17] a high-speed

implementation of AES-128 is proposed, that

requires 10+1 clock cycles to produce the ciphertext.

This design approach was followed in order to

implement AES for the HSSec. Combining the two

works, it was possible to design a high-speed AES-

128 with low design complexity and disjoint the

resources (such as memory) that can be used from

SHA variants. Summarizing, to implement the AES-

128 there is the need of a padding memory of 128-

bits and sixteen temporal registers (8-bit) to store the

State matrix.

2.4 Exploration Results
From the analysis of the requirements of the three

algorithms it was derived that in the case of AES-

128, there is the need to process 128-bits in 10 clock

cycles, in the case of a partially unrolled SHA-1,

process 512-bits in at least 40 clock cycles and in

the case of pre-computed SHA-512, process 1024-

bits in at least 80 clock cycles. The latter presents a

symmetry in the width of processing data, indicating

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 161

that there must be available at least 128-bits every

10 clock-cycles. This allows synchronized parallel

processing of the available data in the padding

memory. This means that instaed of requiring three

padding units of totally 1664 bits, one padding unit

of 1024 bits is more than sufficient.

 Another remark that can be made, based on the

analysis of the three algorithms, is the need of an

extra block that provides data with time

dependencies, such as the message schedules Wt

and the constants for the SHA-1 and the SHA-512

and the keys for the rounds of AES-128. Finally,

there is also the need for a sophisticated register file

to store immediate and/or initialization values for

the three algorithms.

3 System Architecture
The HSSEC co-processor is based on a typical

architecture with central control and processing

elements (PE) in its periphery. The data inputs are

32-bit wide, while output is offered through two 32-

bit wide ports. The handshake signals READY and

SEND allow synchronization of the core for data

receive/send. Furthermore, it controls the flow of the

data in order to successfully provide the calculated

outputs. Especially, signal SEND is also used as a

halt signal, when the core outputs the message digest

of SHA-512. Through the AES_en, SHA1_en,

SHA2_en inputs the co-processor is programmed to

enable operation of the appropriate algorithm. In the

case that the three latter signals bits are set to 0

HSSEC doesn’t process data. The MODE input is

responsible for indicating the operation mode of

AES-128, selecting between the ECB (Electronic

Code Book) and the CBC (Cipher Block Chaining).

Also, signal Key indicates that a key is available.

Finally, outputs OUT hot, OUT AES, OUT SHA1/2

signal output of the processed data (ciphertext,

message digest. Due to the limitation that only one

of the three cryptographic blocks can take control of

the data bus at every time instance, when OUT_hot

is set to 1, then OUT_AES is set to 1 if it has the

control of the output. In the case that OUT_AES is

set to 0, then surely one of the SHA blocks drive the

data bus, thus OUT_SHA1/2 is sufficient to

distinguish the originator of the message digest.

 In Fig. 2 the architecture of HSSec is offered in

detail. As it can be seen there is a central Control

Unit (CU) to manage data processing and

communication with the rest of the world. The

processing blocks that implement the three

algorithms are placed in parallel and share a

common global data bus (64-bits). The same bus

provides data to the memory block (considering

memory hierarchy shown in Fig. 2 as one block and

to the Key Scheduler. The Key Scheduler block is

responsible for the key expansion of AES-128 and

the generation of the message schedules.

Additionally it provides the constants of the SHA

hash functions. In order to produce a new round key,

two transformations have to be performed in the

Key Scheduler, RotWord and SubWord. The first

one simply cyclically shifts the bytes of the first 32-

bit word of the previous key by one position to the

left. SubWord on the other hand performs the

SubBytes transformation to each byte of the rotated

word. Simple bitwise xor is needed in order to

produce the final round key.

Fig. 2. HSSec core architecture

3.1 Area requirements and performance
The HSSec architecture has some key

characteristics. HSSec’s area is kept low due to the

sharing of the memory block (including the padding

unit and the temporal registers. Design complexity

has kept also low in order to gain the regularity this

architecture offers. In general the main benefit in

terms of area requirements, is the reduction of each

common but unshared resource (triplication) to one

but fully shared. In the case of performance, the

parallelism of the three cryptographic blocks and the

selection of high-speed design approaches offered

the noteworthy throughput of 1 Gbps for every

cryptographic block. In fact, it is the critical path of

the SHA-512 that limits performance of HSSec to

this level. In the case of multiple clocks throughput

could even exceed the 2 Gbps.

3.2 Memory organization
Successful selection of the memory organization is

significant for the correct operation of HSSec. The

Memory Block is organized in three main parts. The

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 162

first part is a collection of registers that store the

initialization values for the three cryptographic

algorithms. The second part is a general-purpose

register file where temporal values are stored for

quick access. The third part is the padding unit

which is responsible for storing the fetched data.

 This unit has been organized in 8 banks of 128-

bits wide. Each bank corresponds to the minimum

data required by one of the algorithms (AES-128) as

input. Due to the regularity of the system, 4

consecutive banks form the input message for the

SHA-1 algorithm, while 8 consecutive banks form

the input message for the SHA-512 algorithm. Thus,

8 banks of memory (128-bits each) are forming the

padding unit allowing high-speed processing of the

data. In Fig. 3 the memory organization is

illustrated.

Fig. 3. Memory organization of HSSec.

3.2 Synchronization of HSSee
The main benefit of the HSSec is the

synchronization of the three cryptographic blocks.

The exploration of the three algorithms helped

significantly before entering the system capture

process. The selection of the appropriate design

parameters and proposed approaches was the key for

successful co-operation of the three cryptographic

blocks without synchronization problems or tricky

solutions.

 Selecting an AES-128 design that offered high-

speed ciphering in 10+1 clock cycles set the first

limiting factor that had to be followed in all the

design process and ensure that it was guaranteed.

Thus, 128 bits of data had to be processed in at least

10 clock cycles. Considering that the 32-bit input of

HSSec required 4 clock cycles to fetch the data in

the padding unit, the first limitation seemed to be

guaranteed. Furthermore, after the fetching of the

first 128 bits, Control Unit was responsible to pre-

fetch data, through the I/O interface, 4 clock cycles

before the calculation of the ciphertext. The output

of the ciphertext is performed through the Data I/O

of the I/O Interface. Due to the width of the output

port (32-bits) there is the need for 4 clock cycles

(128 bits= 4 x 32 bits) to successfully send the

whole ciphertext. The architecture of HSSec ensures

that there is at least 10 clock cycles that interpose

between successive calculations of two ciphertexts.

Thus, there is no violation of the synchronization of

the system (4 cycles to pre-fetch data and 4 cycles to

output ciphertext is less than the 10 cycles

available).

 In the case of the two hash functions,

synchronization is much simpler. Input of the two

cryptographic blocks SHA-1 and SHA-512 is

provided through the very same Data I/O port that is

used for the AES-128. Data are padded in the

memory block in banks of 128 bits. This size was

selected to satisfy primarily the AES-128 algorithm.

However, it was observed later on that this size was

ideal for all the three algorithms. Thus, 4 banks are

required for the input message of SHA-1 (512 bits

input) and 8 banks are required for the

corresponding input message of SHA-512 (1024 bits

input). The regularity of the architecture appeared in

this exact point. However, there was a significant

issue that found its solution almost instantly. SHA-1

and SHA-512 require exactly the same number of

clock cycles to generate the message digest.

However, this is unacceptable because of the

processed data. SHA-512 calculates its message

digest for 1024 bits in 80 cycles and thus SHA-1 has

to generate in the same time two message digests,

one for each 512-bits block. The solution was instant

and the initial limitation that was posed for the AES-

128 was extremely handful. Thus, knowing that each

bank (128-bits) are processed in at least 10 cycles,

then there are 40 clock cycles to process the SHA-1

input message. In [14] there is a structure of a high-

speed SHA-1 that performs message digest

calculation in 40 cycles. Regarding SHA-512, time

to process 8 banks (1024 bits) is at least 80 cycles,

exactly the required number of cycles to generate

the message digest.

4 Implementation Results
The HSSec cryptographic co-processor was captured

using Verilog HDL. XST and Leonardo Spectrum

have been used for synthesis. XST has been used to

synthesize only the modules that infer the

BlockRAMs, because Leonardo Spectrum [18] does

not infer dual-ported BlockRAMs. The Xilinx ISE

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 163

5.2 tools have been used for the implementation of

the design and ModelSim was the simulation

environment (for both logic and timing simulation).

 Xilinx Virtex-II XC2V1000bg575 (speed grade -

5) has been chosen as the target device. This device

has 5120 CLB Slices which provide a total of 10240

LookUp Tables and 11224 Dffs or latches. Total

memory available in terms of BlockRAM is 40

blocks of 16kbits each. Detailed analysis of the

Virtex-II structure may be found in [19]. Table 1

presents detailed implementation results for the

HSSec cryptographic co-processor. The

implementation was tested in depth both

functionally and operationally. There was no report

for erroneous or generally unexpected behavior.

TABLE 1

Implementation Results

Device Utilization (XC2V1000bg575 -5)

Resources Used Available

(%)

IOs 295 328 90

CLB Slices 3213 5120 63

BlockRAMs 9 40 23

Timing Report (XC2V1000bg575 -5)

Clock Freq. (MHz) 80.21

Clock cycle (ns) 12.47

Throughput (Mbps)

AES-128 1026.68

SHA-1 1026.68

SHA-512 1026.68

5 Conclusion
HSSec is a cryptographic co-processor, specially

designed to support security systems requiring AES-

128 ciphering parallel to SHA-1 and SHA-512

hashing. The latter algorithms are commonly used in

network applications and have been selected for the

upcoming protocols JPSec [2] and P1619 [3]. The

architecture of HSSec allows parallel operation of

the three cryptographic primitives. Special design

effort was given to benefit the system with

regularity, which enabled low-area requirements.

There are no synchronization issues due to the

appropriate selection of the AES-128, SHA-1 and

SHA-512 implementations.

 Area requirements have been kept low. However

this didn’t had a bad effect to the coprocessors

performance. HSSec was implemented for XILINX

Virtex-II FPGA device family. Its operation and

functionality have been validated and the

implementation was evaluated. Area was kept low,

as expected, while the three cryptographic primitives

performed a 1Gbps throughput. The achieved

throughput can be further increased using a multi-

clock design strategy, which however would affect

the characteristics of HSSec.

6 Acknowledgement
We thank European Social Fund (ESF), Operational

Program for Educational and Vocational Training II

(EPEAEK II) and particularly the program

PYTHAGORAS, for funding the above work.

References:

[1] IP Security Protocol Charter (IPSEC).

Internet Drafts for IPSec.

http://www.ietf.org/html.charters/ipsec-

charter.html

[2] ISO/IEC 15444-1/IUT-T T.800. International

standard, 2000.

[3] IEEE standard P1619. Standard Architecture for

Encrypted Shared Storage Media (draft).

http://siswg.org/.

[4] J. Daemen, V. Rijmen, The Design of Rijndael,

Springer-Verlag, 2002.

[5] National Institute of Standards and Technology,

standard 197. The Advanced Encryption

Standard (AES), 2001.

[6] National Institute of Standards and Technology,

standard 180-2. Secure Hash Standard (SHA),

2002.

[7] ALMA Technologies. http://www.alma-

tech.com

[8] Bisquare Systems Private Ltd.

http://www.bisquare.com

[9] Helion Technology Ltd.

http://www.heliontech.com

[10] Intron, Ltd. http://www.lviv.uar.net/ intron/

[11] Ocean Logic Ltd. http://www.ocean-

logic.com

[12] Amphion.

http://www.amphion.com/index.html

[13] National Institute of Standards and

Technology, Special Publication 800-38.

Recommendation for Block Cipher Modes of

Operation, 2001.

[14] H. Michail, A.P. Kakarountas, O.

Koufopavlou, C.E. Goutis, “A Low-Power and

High-Throughput Implementation of the SHA-1

Hash Function”, in Proc. of IEEE 2005

International Symposium on Circuits and

Systems (ISCAS’05), Kobe, Japan, pp. 4086-

4089, May 2005.

[15] I. Yiakoumis, M. Papadonikolakis, H.

Michail, A.P. Kakarountas, C.E. Goutis,

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 164

“Efficient small-sized implementation of the

keyed-hash message authentication code”, in

Proc. of IEEE 2005 EUROCON as finalist in the

IEEE Region 8 Best Student Paper Contest,

Belgrade, Yugoslavia, pp. 1875-1878, Nov. 21-

24, 2005.

[16] S. Mangard, M. Aigner, S. Dominikus, “A

Highly Regular and Scalable AES Hardware

Architecture”, IEEE Trans. on Computers 52(4)

(2003) 483–491.

[17] A. Brokalakis, A.P. Kakarountas, C.E.

Goutis, “A High-Throughput Area Efficient

FPGA Implementation of AES-128 Encryption”,

in Proc. of IEEE 2005 International Workshop

on Signal Processing Systems (SiPS’05), Athens,

Greece, pp. 116-121, Nov. 2-4, 2005.

[18] Xilinx 5 Software Manuals. Synthesis and

Simulation Design Guide. Xilinx, Inc, 2002.

[19] Xilinxs Virtex-II Platform FPGAs

Datasheets.

6th WSEAS International Conference on Information Security and Privacy, Tenerife, Spain, December 14-16, 2007 165

	Text4:

