
Efficient protection against data errors in embedded control software

MICHAEL SHORT1, MICHAEL SCHWARZ2 and JOSEF BOERCSOEK2

1Department of Engineering,
University of Leicester,

University Road,
Leicester,

UK

2 Department of Engineering,
Universitat Kassel,

Wilhelmshoeher Allee 73,
34121 Kassel,
GERMANY

Abstract: - This paper presents a novel approach to tolerating transient data faults that may affect the software
executing on commercial-of-the-shelf (COTS) embedded processors. The main concept of the approach is the
use of information redundancy, in which the program user data and user stack areas are duplicated byte-for-
byte in areas of RAM known as mirror arrays. We also present a novel approach to implementing the
management of this data duplication and fault detection/correction in software which results in highly
readable, portable code. Preliminary results are reported for a matrix multiplication program which indicates
the effectiveness of the technique.

Key-Words: - Software Fault Tolerance, Embedded Systems.

1 Introduction
Modern control systems are almost invariably
implemented using some form of embedded digital
computer system [1]. The dominance of digital
systems in this field is a consequence of the low
cost, increased flexibility, greater ease of use, and
increased performance of digital control algorithms
when compared with equivalent analogue
implementations [2][3].
 When such embedded systems are used in
situations where their correct functioning is vital,
special care must be taken to ensure that the system
is both reliable and safe [4][5]. In particular, care
must be taken to ensure that both transient and
permanent memory faults - such as Single Event
Effects (SEE’s) caused by particle strikes - must not
cause the program execution to veer from its desired
trajectory and cause the system to enter potentially
dangerous situations.
 Previous research has demonstrated that SEE’s
may manifest themselves in a variety of ways. They
may cause transient disturbances known as Single
Event Upsets (SEU’s) - manifested as random bit-
flips in memory. They may also cause permanent
stuck-at faults over an array of memory, caused by
damage to the read/write circuitry or chip latchup.
Failure rates for SEU’s in ground-based installations
are in the region of 10-9 - 10-8 failures per bit per
hour [6] and permanent failures in the region of 10-8
- 10-6 failures per device per hour [7].
 Recent years have seen the development of
several software-based approaches to implementing
transient fault detection on COTS processors, which

due to their low-cost are not radiation hardened.
These techniques are designed to detect errors
caused by transient or permanent hardware faults by
relying on specially crafted software, without
resorting to special-purpose hardware.
 Many of the techniques, for example [8][9][10],
are based on similar approaches, in that
modifications are made to the application code to
detect deviations from the expected execution flow.
If any deviations are detected, program execution is
suspended and an error recovery procedure is called
(oftentimes simply resetting the processor to a
known state). They are based around data
duplication, instruction duplication and control flow
checking.
 Although providing relatively high levels of fault-
tolerance, such approaches are problematic (from
the point of view of the embedded system
developer) for two main reasons. The first is that
when data duplication is employed, the developer
has little control over where the duplicated copies
reside in memory. For example, when temporary
variables are declared, they are all placed by the
compiler in the user stack area - next to one another
- as such, they are at risk of a common failure
should the memory chip implementing the user stack
become faulted.
 The second is the sheer complexity involved in
applying the techniques. Many are only suitable for
use with automatic code generators, which may be
problematic from a safety perspective and may
cause problems with certification. Conversely, when
the techniques are applied by hand, the complexity

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 303

of the source code increases dramatically, and the
basic meaning of the code itself becomes obscured -
this can cause problems with maintainability and
testing. For example, consider the segment of C
code shown in figure 1.

01: #define N (10)
02: int i;
03: int a[N],b[N];
04: for(i=0;i<N;i++)
 05: {
 06: b[i]=a[i];
 07: }

Fig. 1: Un-hardened code

To most programmers, the meaning of the code is
self-explanatory; to copy and array of 10 integers.
Now, consider the same code, hardened using the
technique suggested by Redaudengo et al. [10]. This
is shown in figure 2 (without the required
initialization code). The total code segment,
including the initialization which must be called
before each operation, and the XOR macro CHK, is
in excess of 36 lines in length; the meaning of the
code is also somewhat obscured. Additionally, the
variable i in figure 2 remains un-hardened; and the
arrays a0, b0, a1 and b1 all reside alongside each
other in the same area of memory.

01: #define N (10)
02: int i ;
03: int a0[N], b0[N] ;
04 int b1[N], b1[N] ;
05 int c0, c1 ;
06: for (i = 0 ; i < N ; i++)
07: {
08: c0 = c0 ^ b0 ;
09: c1 = c1 ^ b1 ;
10: b0 [i] = a0 [i] ;
11: b1 [i] = a1 [i] ;
12: c0 = c0 ^ b0 ;
13: c1 = c1 ^ b1 ;
14: if (a0 [i] != a1 [i])
15: {
16: if (CHK (a0, b0) == C0)
17: {
18: a1 [i] = a0 [i] ;
19: c1 = c0 ;
20: }
21: else
22: {
23: a0 [i] = a1 [i] ;
24: c0 = c1 ;
25: }
26: }
27: }

Fig. 2: Hardened code

 In this paper, we will attempt to address these
problems of code complexity, obscurity and variable
location, and propose a novel methodology we have
implemented for this purpose. The paper is
organized as follows. In Section 2 we will describe
the memory architecture of a typical COTS
microcontroller. Section 3 will introduce the concept
of the mirror array. In Section 4 we will describe
how the redundancy management can be achieved in
C and C++ programs, resulting in code that is highly
readable and maintainable. Section 5 describes an
experimental study performed to asses the
effectiveness of the methodology. The paper is
concluded in Section 6.

2 Embedded System Memory
Before describing the methodology in full, we will
first describe the architecture of a typical embedded
processor. Many embedded processors employ
either a Harvard architecture – in which the code
and data memory areas employ a different address
space - or Von Neumann architecture, in which the
code and data memory share a common address
space. The techniques we describe are equally
applicable to both architectures. It is common for a
processor to have a small amount of on-chip
(internal) RAM, termed the IRAM. It may or may
not have a small amount of on-chip ROM or FLASH
for code storage.
 At the lowest address spaces, there will normally
be an interrupt vector table, implemented in ROM.
The lowest of these contains the reset vector – upon
start/reset, the processor loads this vector from
address 0h and jumps to the appropriate memory
address where program execution commences.
Following this vector table, the IRAM will
commonly be implemented. The system designer is
then free to use the address space following the
IRAM for implementation of either externally
implemented RAM or ROM. A typical configuration
for a Von Neumann style architecture is shown in
figure 3.
 The CPU registers, system stack and Special
Function Registers (SFR’s) will be implemented in
the IRAM; normally there is space for a small
amount of user variables in this area. Since most
embedded systems utilize a scheduler (a small
specialized RTOS), a developer will typically
implement the scheduler data areas in the remaining
IRAM to reduce overheads, as access to this data
area is faster than XRAM. The user stack and all
task data will then be implemented in XRAM. This
flexibility in assigning areas of XRAM, possibly

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 304

even over multiple (physically separate) memory
chips, can thus be exploited to increase reliability.

Fig. 3: Typical address space usage

Before describing this process, we will state a
number of assumptions that will be used throughout
the remainder of the paper:

• We assume that the designer wishes to duplicate

data in the user stack and task data areas, both
implemented in XRAM1.

• The management of this duplicated data should
be as straightforward as possible, with minimal
alterations to the source code.

• For the remainder of this paper, we will use the
notation tByte to represent an unsigned 8-bit
value, tWord to represent an unsigned 16-bit
variable and tFloat to represent a floating point
variable.

• We assume that if an uncorrectable data
inconsistency is detected, the processor is forced
into a reset mode to run pre-programmed built-
in-test routines - other behavior may be more
appropriate depending on the application.

3 Mirror Arrays
The mirror array is an entirely replicated area of
external memory, shifted from its base address by an
offset value, which is written to and read from every
time the corresponding primary area is written to or
read from in the original. The advantage of using
such an approach is that by choosing appropriate
offset values, the programmer can specify absolute

1 Hardening of data in the IRAM areas is of course
possible, but a description of such a process is not
within the scope of the current paper

addresses for these mirrors to reside in; they can also
reside in physically separate memory devices, from
different manufacturers. This can potentially
increase system reliability by avoiding common-
mode failures in memory devices.
 Such arrays can be used to provide data
redundancy for global, persistent data, and since the
user stack can also be mirrored, temporary variables
can also be duplicated in the mirror.
 Suppose a designer has created a working
(standard) program which uses 200h bytes of
XRAM, at addresses 0x10000 to 0x101FF. The user
stack is located in the first 100h bytes, and the
remaining data is global in scope. The entire
contents of this data area can then be ‘mirrored’ at
address space 0x11000 to 0x111FF - assuming the
memory is physically present - shifted by a fixed
offset of 1000h. This process can be repeated at
other fixed offsets in memory, and the required level
of data duplication can be achieved. This is shown
in figure 4. For space reasons, in this paper we will
primarily describe the duplex implementation.
However, we have also considered the triplex
implementation; this can be achieved with very little
alteration to the underlying method.

Fig. 4: Mirror array concept

 In order for this methodology to work correctly,
we require some way to manage this redundancy in
the program code. If this can be achieved, data can
be managed dynamically - as and when it is written
to. Similarly, when a variable is read, we wish to
also read the duplicated data areas and verify the
data integrity. In section 4 we describe such a
methodology for use with C/C++ compilers.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 305

4 Implementation
Due to the unnecessary overheads associated with
many C++ programs, many resource-constrained
embedded programs are written only in C [11].
However, many C compilers have built-in C++
features - indeed these extra features are often
implemented as a built-in pre-processor for a
standard C compiler. If care is taken in the
programming approach, objects may be compiled in
C++ and exported to ordinary C programs using the
extern “C” compiler directive, with little/no
processing or memory overheads. The code
described in this section was developed using the
Keil embedded C/C++ compiler [12] – other
compiler platforms may use slightly different
terminology.
 In order to implement the proposed approach, and
make its use as transparent as possible to the
programmer, we implemented three new basic data
types as C++ classes. These new data types can then
be exported to ordinary C programs if required. We
created the data types duplex_tByte, duplex_tWord,
and duplex_tFloat, to be used, from the
programmers perspective, identically to the basic
data types representing a byte, word and float, with
the exception that read and write operations to the
basic data invoke code to implement the mirror
arrays.
 Each class contains a single private data
declaration, Primary_Data, corresponding to the
basic simplex data type. We then create the required
read and write operations on this data by defining
new operator member functions using the operator
keyword. By way of example, we show the member
functions for the assignment and reference
operations for the duplex_tByte data type in figure
5. Line 1 of this code defines an offset in memory of
1000h for the duplicated data. The inline keyword
preceding the function deceleration of line 2
indicates that the code is to be executed inline, not
as a function call – this minimizes the processing
overheads. The remainder of line 2 indicates that the
code should be executed when an assignment is
made to the class, and passed a value of type tByte.
Line 4 features the statement _atomic_(0). This
instructs the compiler (and microprocessor) to treat
the following instructions, until the _endatomic_()
statement is reached (line 6 in this case), as a single
(uninterruptible) machine instruction. This is
important to maintain data consistency in the mirror
in pre-emptive systems. In line 5, we then assign the
value passed to the class to both the primary data
and the corresponding data in the mirror array. The
function then exits.

01: #define MEMORY_OFFSET (0x1000)
02: inline void duplex_tByte::operator = (tByte Value)
03: {
04 _atomic_(0) ;
05 Primary_Data = * (&Primary_Data +

MEMORY_OFFSET) = Value ;
06 _endatomic_() ;
07 }
08 inline tByte duplex_tByte::operator () (void)
09 {
10 atomic_(0) ;
11 If (Primary_Data == *(&Primary_Data +

MEMORY_OFFSET))
12 {
13 return (Primary_Data) ;
 14 _endatomic_() ;
15 }
16 else
17 {
18 _trap_(0x00) ;
19 _endatomic_() ;
20 }

Fig. 5: duplex_tByte operator functions

 Line 6 indicates that the following function code
should be executed, again inline, when the data type
is referenced. In line 11, we compare the primary
data to the corresponding data in the mirror array. If
the data is consistent, we return the value and exit
the function. If not, the statement _trap_(0x00) on
line 18 executes a full system reset - this is
equivalent to a reset by an external watchdog. In the
triplex data type, the assignment and reference
functions are suitably modified to incorporate the
third data area; the reference function additionally
performs a 2 from 3 vote if possible, and executes a
reset if all the data are inconsistent.
 On reset, the chip first enters a test mode where,
among other things (such as ROM checksum tests),
the RAM functionality is verified to detect faults,
using a similar method as outlined in [13] before
normal program execution commences. If a faulty
RAM is detected, the system can enter a safe state,
and perform appropriate external signaling to
maintain system integrity.
 Each of the C/C++ operators, such as ++, --, <=,
and so on, were similarly implemented as inline
member functions for the new data types. Thus, in
combination, this ensures inter-operability of the
new classes with each other and the basic data types;
the implementation (and compiler consistency
checking) of the duplicated data is completely
hidden from the programmer.
 Although we have implemented constructors for
each data type to initialize the data in the mirror
areas, it is beneficial to initialize the mirror areas as
part of the initialization code. This can be achieved
either in assembly, as part of the XRAM test, or

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 306

directly in C. The _at_ or MARRAY specifiers can
be used with the Keil compiler to specify an
absolute area for direct memory access in C.
 The resulting data types are highly portable, and
do not obfuscate the meaning of the hardened code.
With reference to figure 1, applying the code
hardening methodology we have described produces
the source code shown in figure 6. From this figure
it can be observed that the code length is identical to
the original and is also highly readable.
Additionally, we note that the variable i is also
hardened in this case.

01: #define N (10)
02: duplex_tByte i;
03: duplex_tByte a[N],b[N];
04: for(i=0;i<N;i++)
 05: {
 06: b[i]=a[i];
 07: }

Fig. 6: Hardened code

 The methodology does not require the use of
automatic code generators; this simplifies the
process of code certification, as no ‘extra’
components need to be certified as the process of
certifying the compiler will be required regardless.
All that is required is for the programmer to have a
basic understanding of the meaning of the new data
types. It also allows a system developer to first
implement the system in a simplex fashion,
determine the memory requirements for the system,
then harden the code when the required memory
offset has been determined. The hardening
procedure can be accomplished in seconds.
 In the following section we describe preliminary
experimental results we have obtained from
applying the technique.

5 Experimental Results
To asses the effectiveness of the proposed
methodology, we performed several fault-injection
studies on an Infineon C167 microcontroller [14]
executing a 4x4 matrix multiplication program. The
experimental set-up is shown in figure 7.
 During each experiment, we injected transient
faults into the XRAM data area at random times,
performing random bit-flips in all the user data
areas. The fault injection was performed using a
high-speed serial link and a small monitor program
in the C167. The main program loop first initializes
the source matrices with values hard-coded into the
ROM. The matrix multiplication is then performed.
The values contained in the result matrix are then

compared with values coded into the program ROM.
The process then repeats endlessly. Any failures,
detected faults or corrected faults are reported to the
host PC via the serial link.

Fig. 7: Experimental setup

 We considered three different implementations of
the program; the un-hardened (simplex) case, and
two hardened versions (duplex and triplex) of the
program. The application of any such technique has
an impact on the required system resources; we
begin by describing the resulting code size, memory
requirement and execution time of each iteration of
the program. The results are shown in table I.

Table I: Required system resources

 In table II, we summarize the results we recorded
during the fault injection experiments. In the duplex
and triplex cases, we increased the number of faults
injected to reflect the increased size of the program
data areas. Fault effects are classified into one of
four categories as follows.

• Effect-less: the fault does not result in a

computation failure.
• Detected: the fault is detected but cannot be

corrected – the iteration is restarted after
processor reset.

• Detected and corrected: the fault is detected
and has been corrected.

• Failure: the fault is not detected or corrected
and results in an invalid computation output.

 From table I, we can see an increase of
approximately 4.5% and 14.1% increase in the
code size for the duplex and triplex case

Resource Simplex Duplex Triplex
Code Size (b) 1956 2044 2232

Memory Size (b) 204 408 612
Execution Time (ms) 0.918 2.16 2.61

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 307

respectively, 100% and 200% increase in data
memory, and a 135.3% and 184.3% increase in
execution time. In terms of data memory increase,
the duplex and triplex case invariably causes a
doubling or trebling of each of the hardened
variables, plus the user stack. The code size
increase in this case is small; despite the use of
inline function calls. The increase in execution time
is almost doubled and tripled by the application of
the technique; this is however to be expected as
each hardened variable uses instruction replication
and comparison. In cases where the software in not
data intensive (unlike this example) or only
portions of the data need to be hardened, then the
increase in execution time will be must greatly
reduced; we present here a ‘worst-case’ analysis of
the method.

Table II: Fault injection results

 Simplex Duplex Triplex

Injected 10000 20000 30000
Effect-less 1289 2448 3744
Detected 0 17552 0

Detected/Corrected 0 0 26256
Failures 8711 0 0

 Now considering table II, we can see that in each
case approximately 12% of each of the injected
faults was effect less. In the simplex system, the
remaining faults all caused failures. In the duplex
system, all remaining faults were detected; no
failures occurred. In the triplex system, all
remaining failures were detected and corrected; the
system is fully fault-tolerant. From the perspective
of safety critical systems, both the duplex and triplex
system were capable of preventing failures resulting
from the incorrect computations of the simplex case.
 When compared to techniques such as [8][9][10],
these results suggest that both the duplex and triplex
techniques are comparable in terms of memory size
increase, and favorable in terms of code segment
increase and execution time. Additionally, these
results show that high levels of fault detection and
tolerance to permanent and transient failures in
RAM can be achieved without the need for
automatic code generators; and the impact on source
code readability and maintainability is negligible.

6 Conclusion
In this paper, we have presented a novel approach to
software implemented fault-tolerance that can be
used in embedded systems. The approach relies on

data and instruction duplication. We have shown
how new data types can be implemented as C++
classes and exported into a C program. We have
shown that the method is easily applied, results in
readable code, and is able to tolerate 100% of the
injected faults on the benchmark described. These
results suggest that the method may be highly
applicable to safety-related embedded system
designs based on COTS processors.

References:

[1] C.T. Kilian, Modern control technology:

components and systems, Delmar Thomson
Learning, 2000.

[2] K. Astrom, B. Wittenmark, Computer
Controlled Systems: Theory And Design,
Prentice Hall.

[3] G.S. Virk, Digital computer control systems,
McGraw-Hill, 1991.

[4] N. Storey, Safety Critical Computer Systems,
Addison Wesley Publishing, 1996.

[5] N.G. Levenson, Safeware: System Safety and
Computers, Reading, M.A., Addison-Wesley,
1995.

[6] E. Normand, Single Event Effects in Avionics,
IEEE Trans. on Nuclear Science, Vol. 43, No.
2, 1996.

[7] P. Dodd, L. Massengill, Basic Mechanisms and
Modeling of Single Event Upset in Digital
Microelectronics, IEEE Trans. on Nuclear
Science, Vol. 50, No. 3, 2003.

[8] N. Oh, P.P Shivani, E.J. McCluskey, Control
Flow Checking by Software Signature, IEEE
Trans. On Reliability, September 2001.

[9] A. Benso, S. di Carlo, G. di Natale, P. Prinetto,
L. Tagliaferri, Control-Flow Checking Via
Regular Expressions, Proc. IEEE Asian Test
Symposium, pp. 299-303, 2001.

[10] M. Rebaudengo, M. Sonza Reorda, M.
Violante, A new approach to software-
implemented fault tolerance, Proc. IEEE Latin
American Test Workshop, 2002.

[11] M. Pont, Embedded C, Addison-Wesley, 2002.
[12] Keil, XC16x/C16x/ST10 Product Overview,

http://www.keil.com/c166/.
[13] S. Hamdioui, A. van der Goor, M. Rogers,

March SS: A Test for All Static Simple RAM
Faults, Proc. Of the 2002 IEEE Intl. Workshop
on Memory Tech., Design and Testing, 2002.

[14] Phytec, phyCORE 167CS Hardware Manual,
Phytec, April 2003.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 308

http://www.keil.com/c166/

