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Abstract: In this paper we compare the evolution of simple behaviour patterns for both an individual and a group
of simulated physical robots. An evolutionary algorithm with quite general objective function is used to study
the ability to develop behaviour patterns such as the maze exploring ability. The group experiments demonstrate
the development of collective behaviour where the group members follow the leader who is exploring the maze.
Although controlled by identical simple neural network, the group members demonstrate a level of specialization.
The experiments have been verified with the real physical Khepera robots.
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1 Introduction

In contrast to traditional systems, reactive and behav-
ior based systems have placed agents with low lev-
els of cognitive complexity into complex, noisy and
uncertain environments. One of the many character-
istics of intelligence is that it arises as a result of an
agent’s interaction with complex environments. The
Evolutionary robotics (ER) approach attacks the prob-
lem through a self-organization process based on ar-
tificial evolution. Its main advantage is that it is an
ideal framework for synthesizing agents whose behav-
ior emerge from a large number of interactions among
their constituent parts [8].

In recent years, ER is gathering increasing atten-
tion, focusing mainly on group of robots. The results
are rather encouraging and suggest that an evolution-
ary method might be successfully applied to the syn-
thesis of cooperative collective behavior. In this paper
we present a set of experiments in which both the in-
dividual robots and a group of simulated robots were
evolved to perform different tasks within a middle-
sized arena. For the individual robots we observe the
emergence of higher behaviour patterns such as fol-
lowing the wall (either left or right) which happens to
be an efficient strategy for general maze exploration.
During the group experiments we deal with several
robots endowed by identical neural control mecha-
nism, one of which carries a light source that other
robots can sense. The ability to follow the team leader
is gradually developed during the course of evolution-
ary algorithm. Team members do not know their po-
sition, the only way to sense another robot is by eight
infrared sensors. It has been shown, that this way it
is hard for a robot to distinguish between a wall and

another robot. We show, that despite the difficult con-
ditions, collective behavior can emerge and group of
robots can find circular “home” area in the unknown
environment.

The organization of the paper is as follows. In the
next section we review the related literature. In sec-
tion 2 and 3 we briefly present multilayer perceptron
networks and evolutionary algorithms. The next sec-
tion describes our experimental framework with the
emphasis on the evolutionary algorithm fitness func-
tion which is a key element for the behaviour forma-
tion. The results obtained are presented in section 5.
Finally, in section 6 we discuss the implications of the
obtained results and future directions of our work.

2 Related work

The book [8] provides comprehensive introduction to
the ER, with focus on robot systems. Recently, ef-
fort is made to study emergence of intelligent be-
havior within the group of the robots. Pioneering
work was done by Martinoli [7]. He solved the task,
in which group of simulated Khepera robots were
asked to find “food items” randomly distributed on an
arena. The control system was developed by the arti-
ficial evolution. First example of the use of artificial
evolution to design coordinated, cooperative behavior
for real robots is the work [9]. Artificial evolution
was employed to design neural network controllers
for small, homogeneous teams of mobile autonomous
robots. The robots were evolved to perform a forma-
tion movement task from random starting positions,
equipped only with infrared sensors.

The work [1] presents a set of experiments in
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which a group of simulated robots were evolved for
the ability to aggregate and to move together toward
a light target. Evolved individuals displayed inter-
esting behavioral patterns in which groups of robots
acted as a single unit. Moreover, groups of identi-
cal evolved individuals displayed primitive forms of
”situated” specializations in which different individu-
als played different behavioral functions according to
the circumstances. Neural networks used in the ex-
periments were simple feed forward neural networks
without hidden neurons.

As noted in [2], distributed coordination of
groups of individuals accomplishing a common task
without leaders, with little communication, and on
the basis of self-organising principles, is an impor-
tant research issue within the study of collective be-
havior of animals, humans and robots. The paper
shows how distributed coordination allows a group of
evolved physically-linked simulated robots (inspired
by a robot under construction) to display a variety of
highly coordinated basic behaviors such as collective
motion, collective obstacle avoidance, and collective
light approaching.

3 Multilayer perceptron networks

Feedforward neural networks has become a widely
used tool in robotics for various reasons. They provide
straightforward mapping from input signals to output
signals and several levels of adaptation.

A multilayer feedforward neural network is an
interconnected network of simple computing units
called neurons which are ordered in layers, start-
ing from the input layer and ending with the output
layer [5]. Between these two layers there can be a
number of hidden layers. Connections in this kind of
networks only go forward from one layer to the next.
The outputy(x0, . . . , xn) of a neuron is defined as:

y(x0, . . . , xn) = g

(

n
∑

i=1

wixi − w0

)

, (1)

wherex is the neuron withn inputs(x1, . . . , xn), one
outputy(x), (w0, . . . , wn) are weights andg : ℜ → ℜ

is the activation function. We have used one of the
most common activation functions, the logistic sig-
moid function (2):

σ(ξ) = 1/(1 + e−ξt), (2)

wheret determines its steepness.
In our approach, the evolutionary algorithm is re-

sponsible for weights modification, the architecture of
the network is determined in advance and does not un-
dergo the evolutionary process.

4 Evolutionary Learning

The evolutionary algorithms (EA) [6, 4] represent a
stochastic search technique used to find approximate
solutions to optimization and search problems. They
use approaches inspired by evolutionary biology such
as mutation, selection, and crossover operations. The
EA typically works with a population ofindividuals
representing abstract representations of feasible solu-
tions. Each individual is assigned afitnessthat is a
measure of how good solution it represents. The bet-
ter the solution is, the higher the fitness value it gets.
The population evolves towards better solutions. It
starts with a population of completely random indi-
viduals and iterates in generations. In each genera-
tion, the fitness of each individual is evaluated. In-
dividuals are stochastically selected from the current
population (based on their fitness), and modified by
means ofmutationandcrossoveroperators to form a
new population. The new population is then used in
the next iteration of the algorithm.

Feed forward neural networks used as robot con-
trollers are encoded in order to use them in the evolu-
tionary algorithm. The encoded vector is represented
as a floating-point encoded vector of real parameters
determining the network weights. Thus, the encoded
network is a vector(P1, . . . , PN ) whereN is a to-
tal number of neurons in the network, and eachPj

represents an encoded neuron parameters, i.e.Pj =
(wj0, . . . , wjNj

) whereNj determines the number of
j-th neuron inputs (it is generally different for differ-
ent layers).

Typical evolutionary operators for this case
have been used, namely the uniform and arithmetic
crossover and the mutation which performs a slight
additive change in the parameter value [10]. The
rate of these operators is quite big, ensuring the ex-
ploration capabilities of the evolutionary learning. A
standard roulette-wheel selection is used together with
a small elitist rate parameter. Detailed discussions
about the fitness function are presented in the next sec-
tion.

5 Experiments

Although evolution on real robots is feasible, se-
rial evaluation of individuals on a single physical
robot might require quite a long time. Therefore we
used the Yaks simulator, one of the widely used sim-
ulation software is the Yaks simulator [3], which is
freely available. Simulation consists of predefined
number of discrete steps, each single step corresponds
to 100 ms. Yaks works with the model of Khepera
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Figure 1: The Khepera robot. A schema of sensors
and motors within the robot body.

robot (Fig. 1). Khepera is a miniature mobile robot
with a diameter of 70 mm and a weight of 80 g. The
robot is supported by two lateral wheels that can rotate
in both directions and two rigid pivots in the front and
in the back. The sensory system employs eight active
infrared light sensors distributed around the body, six
on one side and two on other side. In passive mode,
they measure the amount of infrared light in the envi-
ronment, which is roughly proportional to the amount
of visible light. In active mode these sensors emit a
ray of infrared light and measure the amount of re-
flected light. The closer they are to a surface, the
higher is the amount of infrared light measured. The
Khepera sensors can detect a white paper at a maxi-
mum distance of approximately 5 cm.

To evaluate the individual, simulation is launched
several times. Individual runs are called “trials”.
In each trial, the environment is initialized and the
starting location of the robots is chosen randomly,
The neural network is constructed from the chromo-
some, inputs of neural network are interconnected
with robot’s sensors and outputs with robot’s motors.
The robots are then left to “live” in the simulated envi-
ronment for some (fixed) time period, fully controlled
by neural network. As soon as any robot hits the wall
or another robot, simulation is stopped. Depending
on how well the robots were performing, the individ-
ual is evaluated by value, which we call “trial score”.
The higher the trial score, the more successful robots
in executing the task in a particular trial. Finally, the
fitness value is computed based on trial scores.

5.1 Experiment 1: Individual exploration

In the first experiment, the single robot is put in the
maze of 60x30 cm. The robot’s task is to fully ex-
plore the maze. Fitness evaluation consists of four tri-
als, individual trials differ by agent’s starting location.
Robot is left to live in the environment for 250 simu-
lation steps. As the robot is able to use eight infrared
sensors, feed forward neural with 8 input units, 2 hid-
den units and 2 output units is used as robot controller.

Figure 2: In the maze exploration task, agent is re-
warded for passing through the zone, which can not
be sensed. The zone is drawn as the bigger circle, the
smaller circle represents the Khepera robot. The train-
ing environment is of 60x30 cm.

The three componentTk,j motivates agent to
learn to move and to avoid obstacles.

Tk,j = Vk,j(1 −

√

∆Vk,j)(1 − ik,j) (3)

First componentVk,j is computed by summing
absolute values of motor speed ink-th simulation step
andj-th trial, generating value between 0 and 1. The
second component(1−

√

∆Vk,j) encourages the two
wheels to rotate in the same direction. The last com-
ponent(1 − ik,j) encourage obstacle avoidance. The
valueik,j of the most active sensor ink-th simulation
step andj-th trial provides a conservative measure of
how close the robot is to an object. The closer it is to
an object, the higher the measured value in range from
0 to 1. Thus,Tk,j is in range from 0 to 1, too.

In j-th trial, scoreSj is computed by summing
normalized trial gainsTk,j in each simulation step.

Sj =
250
∑

k=1

Tk,j

250
(4)

To stimulate maze exploration, agent is rewarded,
when it passes through the zone. The zone is ran-
domly located area, which can not be sensed by an
agent. The reward∆j is 1, if agent passed through the
zone inj-th trial and0 otherwise. The fitness value is
then computed as follows:

Fitness =
4
∑

j=1

(Sj + ∆j) (5)

Successful individuals, which pass through the
zone in each trial, will have fitness value in range from
4 to 5. The fractional part of the fitness value reflects
the speed of the agent and it’s ability to avoid obsta-
cles.
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Figure 3: The environment and three robots. Thick
lines represent the walls surrounding the arena of size
80x50 cm. The full circle represents the target “home”
arena. The arc indicates the light intensity, but mean-
ingful values could be measured up to 20 cm only by
robot’s sensors. The robot marked with “1” is the team
leader, carrying the light source.

5.2 Experiment 2: Collective exploration

In the second experiment, team of three robots looks
for circular arena, which is randomly located in the
environment. Robots can sense the arena by the sim-
ulated ground sensor: sensor returns value 1, if robot
is located in the arena and 0 otherwise.

In each of ten trials, the environment is initialized
and the starting location of the team leader is chosen
randomly, remaining robots are situated not far from
him. Each trial took not more than 500 simulation
steps.

The team leader is equipped with simulated light
bulb. This way, team members can use information
from light sensors to produce “following behavior“.
The emitted light can be detected in surroundings of
the team leader up to the distance 20 cm.

All robots are guided by the same neural net-
work, constructed from the chromosome. The robot
is able to use eight infrared sensors in active and pas-
sive mode and ground sensor. Therefore, feed forward
neural with 17 input units, 2 hidden units and 2 output
units is used as the robot controller.

Let’s denote byTk,j the trial score ink-th simu-
lation step andj-th trial, generating value between 0
and 2.

Tk,j = Lk,jM1,k,jM2,k,j (6)

Tk,j is computed as a product of evaluation of
leader(Lk,j) and team members (M1,k,j andM2,k,j)
performance.Lk,j is responsible for exploration be-
havior, whileM1,k,j is responsible for grouping be-
havior.

Lk,j = Vk,j(1 −

√

∆Vk,j)(1 − ik,j) + Zk,j (7)

Zk,j has value1, if the team leader is ink-th sim-
ulation step andj-th trial in the target area, and0 oth-
erwise. Remaining components are computed sim-
ilarly to previous experiment:Vk,j is computed by
summing absolute values of motor speed ink-th sim-
ulation step andj-th trial, generating value between
0 and 1,(1 −

√

∆Vk,j) encourages the two wheels
to rotate in the same direction and the last component
(1− ik,j) encourage obstacle avoidance. Thus,Tk,j is
in range from 0 to 2.

Mi,k,j = (1 − Dk,j(i, 0)) (8)

The valueDk,j(i, 0) is a normalized distance of
roboti to the team leader, computed as follows:

Dk,j(i, j) =

{

1 : dist(i, j) > 200mm
dist(i,j)

200 : otherwise
(9)

In thej-th trial, the trial scoreSj is computed by
adding trial gainsTk,j in each simulation step.

Sj =
500
∑

k=1

Tk,j (10)

The fitness value is then computed by summing
trial scores:

Fitness =
10
∑

j=1

Sj (11)

6 Results and discussion

6.1 Experiment 1: Individual exploration

In the first experiment, robot is rewarded for passing
through the zone, which can not be sensed by its sen-
sors. The zone is randomly located circular arena in a
maze.

The results are encouraging: typical behavioral
patterns, like following the left wall has been devel-
oped, which in turn resulted in the very efficient ex-
ploration of an unknown maze. The best individuals
from the last generation successfully found the ran-
domly located zone in all of 30 trials.

The important thing is to test the quality of the
obtained solution in a different arena, where a bigger
maze is utilized (Fig. 4). However, the agent is ca-
pable of efficient space exploration behavior that has
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Figure 4: The agent is put in the bigger maze of
100x100 cm. Agent’s strategy is to follow wall on
it’s left side.

emerged during the learning to find random zone po-
sitions. The figure shows that the robot trained in a
quite simple arena and endowed by relatively small
network units is capable to navigate in a very complex
environment.

In this experiment, the evolutionary algorithm has
chosen reasonable strategy (follow the left wall) based
only on basic action concepts (move, avoid walls).

6.2 Experiment 2: Collective exploration

In the second experiment, the team of robots was
trained to search for the target circular arena. The
team was guided by the team leader equipped with the
light source. Robots did not know their relative posi-
tions, the team leader could be recognized only by the
light bulb. However, as the robots used only infrared
sensors, they were not able to to discriminate between
wall and another robot. The robots were guided by the
single neural network.

 0
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 700

 0  100  200  300  400  500
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Figure 5: The fitness of the best individual.

Figure 6: Typical run of the best individual from the
500. generation. Three robots aggregate together and
are guided by the team leader (the robot in the mid-
dle), which carries the light source. After reaching
the target area, they do not leave it anymore.

Figure 7: Testing trained behavior when no light
source is in the environment. No group behavior is
present, robots are exploring the environment search-
ing for the light.

The evolutionary process took 500 generations
(Fig. 5). The robot team, corresponding to the best in-
dividual, clearly showed grouping behavior - the dis-
tance between team members did not get over the 200
cm and the team leader was clearly guiding the group.
Remaining robots followed the team leader, keeping
the safe distance (Fig. 6). If the distance between
robots was too small, the robots crashed or team mem-
bers lost the trace of the team leader (obviously, rapid
change of direction by team leader caused the prob-
lems for remaining team members). Starting from ap-
proximately 300th generation, individuals were able
to find target area in all ten trials. To prove the ability
to follow the team leader, robots were put to the envi-
ronment without light source. In these conditions, the
grouping behavior was not present: each robot was
exploring the environment on its own.

Whenever the light bulb was switched off dur-
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ing the experiment (Fig. 7), robots scattered. What’s
more, robots even ignored the target arena. After
switching the bulb on again, the group formation was
slowly reformed.

7 Discussion

We have demonstrated how a more complicated be-
havioural pattern can emerge from rather simple setup
by self-organization via artificial evolution. It is in-
teresting to note that the control mechanism realized
by a neural network does not require a large number
of parameters to fulfill the described tasks. The num-
ber of adjusted parameters (weights and biases in the
network) was around 30 (or 60 for the second exper-
iment). We have performed several tests with larger
networks and alternative architectures including RBF
and recurrent networks [10], but the results were quite
similar for this type of task.

The results reported above represent just a few
steps in the journey toward intelligent team coordi-
nation and collective behavior. The next would be to
extend this approach for more complicated tasks and
compound behaviors. Obviously, task specialization
was present in the experiment, as it was hard-coded
into the fitness function. In the next experiments, we
would like to emerge specialization and labour divi-
sion algorithms. The adaptive process should learn
conditions, in which it is useful (from the team’s per-
spective) to leave the group by it’s team members, or
in which it is useful to act as a single unit.
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