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Abstract:Recent years have revealed growing need for efficient meta-learning. For much longer time it has been
known that there is no single adaptive algorithm, eligible to provide satisfactory (i.e. close to optimal) solutions for
every kind of problem, however computing power facilitates practical applications of more and more sophisticated
learning strategies and more and more thorough search in the space of candidate models. Because testing all
possible models is not (and will never be) feasible, we need intelligent tools tocombine human expert knowledge,
the knowledge extracted by means of computational intelligence and different search strategies to disclose the
nature of a problem and provide attractive models. We present some techniques, we have successfully used in our
meta-learning approaches, describe the crucial ideas of our generalarchitecture for meta-learning, and show some
examples.
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1 Introduction

The need for successful meta-learning is growing.
Fortunately, at the same time, advanced learning is
getting more and more feasible. For now, searching
for as accurate models as possible, has been staying
within the domain of human intelligence, but we are
never as precise, thorough and systematic as comput-
ers can be, so there is no reason why machines could
not perform such tasks better than us.

The progress of computational capabilities, al-
ready now, facilitates successful artificial approaches
to meta-learning. Obviously, searching for optimal
models is NP-hard, so the progress in computing hard-
ware does not facilitate a complete search through the
space of possible models, so we need (and will always
need) intelligent systems for this purpose.

There may be many different views of meta-
learning and many different algorithms putting stress
on different aspects of the field. Till now, the term
“meta-learning” has been used in several meanings.
For example, some articles use this name when talk-
ing about building rankings of methods on the basis of
their predicted eligibility for solving particular tasks
[1], [2]. The rankings were constructed according to
some similarity of the problem being solved to other
known problems. The similarity was measured as a

distance in the space of datasets, where each dataset
was described by a number of quantities correspond-
ing to the types of values contained within the data,
some statistical coefficients [3], results obtained with
some simple learning algorithms [4], [5] (this tech-
nique was given a name oflandmarking), some fea-
tures of decision trees built for the data [6], etc. In
some other approaches instead of measuring similar-
ity between datasets, decision trees were used to de-
cide which algorithm should perform better [7].

Another meaning was given to meta-learning in
numerous articles devoted to ensemble methods, since
building complex structured models can also be seen
as a meta-level task. The complex models include dif-
ferent kinds of committees (also the ones considering
member-model competence when making decisions
[8], [9]), stacking models etc. [10], [11], [12]

All the above-mentioned methods build complex
models or prepare model rankings to act as method se-
lection advisers, which is not satisfactory for us. We
understand meta-learning as automation of the pro-
cess of finding most accurate models for given task
(which eventually should replace human interaction).
It is not enough to compare the datasets to provide
a reliable advise on which method can be more use-
ful to solve the problem, especially because different
methods usually require different data preprocessing
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to obtain optimal results and data transformations may
move datasets into completely different point in the
space of datasets. Thus we emphasize the need for an
intelligent search for the (sub)optimal solution which
can not be based only on some statistical information
about the form of the data, but must integrate meta-
level information of different kinds and sources, in-
cluding human expert knowledge and the knowledge
gained by means of computational intelligence (CI).

2 Goals of meta-learning

From our point of view, meta-learning is the process
of learning how to learn, to obtain as good solution to
given problem as possible. It corresponds exactly to
what humans are trying to do when mining given data:
in order to find very good models we try many differ-
ent methods, their combinations etc., observe and ana-
lyze the subsequent results and use our general knowl-
edge about building CI models, to control the search
in such a way that only the sensible combinations are
tested and those maximizing our suspicions about be-
ing attractive. So meta-learning is a very complex
process incorporating the search for (sub)optimal so-
lutions, using meta-knowledge to conduct the search
and (simultaneously) gaining new meta-knowledge.

Meta-learning aims at finding models which opti-
mize some criteria. It is not restricted to maximizing
classification accuracy, minimizing regression error or
any limited set of tasks. It is important to have the pos-
sibility of providing the criterion without the need of
any changes within the engine of the data mining sys-
tem. Fortunately it is not very difficult in search-based
approaches. Our system provides such openness and
has already been used to reach different goals. Here
we discuss only classification tasks, but two measures
of model attractiveness: classical accuracy and bal-
anced accuracy.

In classification problems, the goal is usually to
maximize the classification accuracy (or balanced ac-
curacy), but its estimation can never be devoid of er-
ror. Thus we are often interested in high stability of
our validation results (i.e. the minimization of their
variance). To achieve this, we prefer maximization of

µ − ασ, (1)

whereµ is an estimation of the expected value of ac-
curacy, σ is the standard deviation of the accuracy
within the validation tests, andα is a parameter (usu-
ally equal to 1 in our approaches). Such measure is

sound with the ideas of testing statistical hypotheses
and its optimization may be seen as the maximization
of the threshold, below which we will not fall with
given probability (equal to 0.5 in the case ofα = 0,
and greater for larger values ofα).

3 The meta-space

By now, our meta-learning approaches have been ap-
plied only to classification problems. In such cases,
the solution space contains different classification
models (simple or complex) built by machines trained
on the data obtained with a number of different trans-
formations.

The set of classification algorithms, we usually
examine includes:
– k Nearest Neighbors,
– Naive Bayesian Classifier,
– Support Vectors Machines (with Gaussian or linear
kernel),
– SSV decision tree,
– Feature Space Mapping neural network.

The list is consistent with our assumption that
methods of different nature should be tested—it con-
tains statistical methods, neural networks, decision
trees and SVM (which, with linear kernel, is a linear
discriminant method).

For each model we need to search through the
space of possible values of the parameters. For exam-
ple: in kNN model we can search for optimal number
of neighbors to analyze, in SVM we can determine the
best values of Gaussian dispersion and the C parame-
ter, in SSV decision tree we may try different settings
of discrete parameters defining the way the tree is con-
structed and/or pruned.

An interesting (because quite unexpected) result,
we obtained in the first stage (testing just classification
algorithms) of our OCR competition effort [13]: sim-
ple 5NN classifier significantly outperformed all the
other classifiers, however it was not the final result—
after some data transformations we obtained signifi-
cantly better results (one of them won the contest) and
other classifiers performed better than 5NN.

Our data mining experience (like the one with the
OCR competition) shows, that proper data transfor-
mation is the crucial point of a successful model. Even
when dealing with classification problems, it is almost
never possible to get optimum results with a classifi-
cation algorithm alone. Moreover, finding appropri-
ate data transformation is often much more difficult
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than finding optimal configuration of a classification
algorithm, because there are plenty of transformations
that may be performed, and they may be combined in
many different ways, so that it is easy to be entrapped
in a combinatorial explosion. It is important not only
to avoid senseless combinations, but also to drive the
search into most attractive directions.

The basic transformations we use are:
– different kinds of normalizations (rescaling to[0, 1]
or [−1, 1] interval, standardization, the same methods
with respect to the data without outliers etc.),
– feature selection methods (based on correlation co-
efficient, F-rank, SSV criterion and some measures
derived from information theory and also some en-
semble methods),
– numerous vector selection methods [14],
– discretization and its reverse (converting continuous
features to symbolic),
– Principal Components Analysis (PCA), usually ac-
companied by selection of several PCs.

Even in the case of standardization we have many
possibilities. Apart from eliminating outliers, we may
considerper-featurestandardization (the classical ap-
proach, where each feature is standardized indepen-
dently) andper-datasetstandardization, which results
in mean 0 and variance 1 within the values of all fea-
tures together—it makes more sense for instance in
the case of text analysis data, where word occurrences
are counted and thus it is advantageous to keep the
proportion between counts for different words. The
per-dataset standardization was crucial in our partici-
pation in the NIPS 2003 Feature Selection Challenge,
where one of the datasets was devoted to text classifi-
cation (as it turned out after contest adjudication).

Another version of normalization was helpful in
our OCR data analysis. Our models erroneously clas-
sified some vectors representing numbers with very
easy to understand shape, but with lower pixel inten-
sity than in the case of other numbers. We called the
transformationdarkening, but in fact it can be seen
as aper-vectornormalization, which may be useful
also in other tasks (e.g. again in text analysis with
word occurrence counts as features, it is one of pos-
sible methods to eliminate the influence of text length
on classification).

Our experience with using PCA is quite diverse.
In the case of the OCR efforts it was completely use-
less (as all the feature selection attempts). Actually
it is not a surprise, because in the 8x8 pixel images
there is no unimportant information—only the corner

pixels are less important, but still they are not a noise
in the data. On the other hand, PCA was the key to
our best model for the Dorothea dataset of the NIPS
2003 competition.

Some meta-learning approaches are based on the
idea that datasets which are similar with respect to
some statistical information will be best solved by
similar methods. In the context of data transforma-
tions it is not justifiable, because a dataset before and
after a transformation may be completely different.
Moreover, very often different classification methods
require different data preprocessing to obtain the high-
est possible accuracy, so their runs on the same form
of dataset may be incomparable. And inversely: it is
easy to create two datasets with the same types of fea-
tures, such that one will be perfectly classified by a
decision tree and poorly by kNN, and the other with
the opposite result.

The set of reasonable data transformations and
classification algorithms is not small, even for a sin-
gle unit exhaustive search in the space of parameters
is too expensive and when different methods are com-
bined, the solution space gets so huge that the search
must be supported with some intelligence. The fol-
lowing sections address these problems.

4 Meta-schemes

One of the fundamental ideas of our meta-learning
approach is driving the search by means ofmeta-
schemes. They are directed acyclic graphs (DAG) of
boxes representing scheme placeholders and partic-
ular models, interconnected according to the input–
output connections. The scheme placeholders define
places in the DAG, where meta-learning algorithms,
in their adaptive processes, try to put different learn-
ing models (they need not to be just single meth-
ods, but also some complex hierarchies which we call
schemes). Restricting the search to model structures
compatible with the ones given by the meta-schemes
is a way to take advantage of experts meta-knowledge
to drive the search process. At the same time, such
constraints facilitate significant reduction of time con-
sumed by the search. Thence, the key point is to de-
sign such meta-schemes, that the space is significantly
reduced, but it still contains interesting models.

We may define meta-schemes to play the role of
classification, data transformation etc. (the role is de-
fined by inputs and outputs). We can nest the meta-
schemes, i.e. fill the placeholders in one meta-scheme
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Figure 1: Basic scenario for data transformation and
classification

Figure 2: Typical feature selection transformation

with an instantiation of another meta-scheme, so there
are no limits in complex schemes construction. The
possibility of nesting is especially precious, for exam-
ple when searching for most useful data transforma-
tions, which may have different length (unknown in
the beginning of the search).

An example of a simple meta-scheme is presented
in figure 1, where we have two placeholders to be
filled during learning: one for a data transformation
and another one for a classification machine. The
whole meta-scheme, has one input (where training
dataset is expected) and two outputs: one for classi-
fication and the other for data preparation before clas-
sification. Thus after proper substitutions, it may be
used everywhere a classifier is needed.

An example of a complex data transformation is
presented in figure 2. The transformation performs
feature selection for a data table. It is split into two
parts: first a ranking of features is created and then
proper selection performed. It is again a meta-scheme,
because it contains a placeholder for a feature ranking
model. The feature selection part is a precise model
here, because given a ranking the selection is always
performed in the same way. The meta scheme of fig-
ure 2 can be put in the placeholder for data transfor-
mation in figure 1 (the idea of nesting schemes, men-
tioned above).

When striving to meta-learning goals, we must
not forget about justification of the validation meth-

ods we use. Incorrect validation usually leads to
overoptimistic (thence useless) results, and provides
no real confirmation of generalization abilities of the
machine. Thus, it is very important to validate not
just the final model (e.g. classifier or approximator),
but the whole sequence of operations performed from
raw data to the decider. No supervised part of the se-
quence is allowed to be put outside of the validation
process and treated as an element of the data prepro-
cessing stage. The split of data analysis processes into
data preprocessing and final learning is very common
in the literature, but it is often not justifiable.

The idea of meta-schemes is also very useful in
the context of validation. The meta-scheme presented
in figure 3 facilitates easy validation of the machines
substituted for the placeholders. The meta-search can
perform the substitutions, run the whole scenario by a
single command, and check the validation results af-
terward. The left side figure depicts the configuration
time of the “Meta machine”. The “Validator” machine
is to validate configurations of machines composed
of a data transformer and a classifier (substituted by
the “Meta machine” in runtime). The right side fig-
ure presents an iteration of the runtime. The “Meta
machine” substituted F-score feature selection for the
“Transformer” and SVM for “Classifier” and executed
the “Validator” which used train-test data distributor
to validate the configuration prepared by the “Meta
machine” (the details of the validation model are be-
yond the scope of this article, they can be found in
[15]).

5 The meta-learning algorithm

Our meta-learning approach is a heuristic search in
the pursuit of the optimum model. The search space
is restricted by means of meta-scheme basedmachine
generatorsand acomplexity control mechanismis in-
troduced to reasonably conduct the search.

The search procedure is a single loop in which
we validate different machines starting with the fastest
and simplest ones and proceeding to more and more
complex and time-consuming methods. Such order
is natural because we do not want to test complicated
models when simple models provide satisfactory solu-
tions or run time-consuming processes when fast ones
perfectly do the job.

The machine generators use constraints defined
as meta-schemes to build more and more complex
machine architectures (compatible with the meta-
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Figure 3: A meta-scheme for validation (configuration—left side diagram and runtime—right side diagram)

schemes) and pass them to the main meta-learning al-
gorithm, when requested.

Machine complexity control is used both to de-
cide the order of validation of candidate machines,
and also to avoid long-lasting processes which could
block the whole process (sometimes it is not possi-
ble to guess the complexity in advance, so a machine
which declares low complexity may turn out to be
very expensive, and the main meta-learning loop must
detect it and brake such a subprocess).

Obviously the methods which are fast should be
tested before more time consuming ones and sim-
ple models are preferable to complex ones, when
their quality does not differ significantly. Thus, the
complexity measure must reflect both model structure
complexity and machine time complexity. In this con-
text, a comfortable measure is theLevin complexity,
which (in the case of learning machines) is defined as
the sum of model (description) length and logarithm
of the time of its adaptive method execution:

L + log(T ). (2)

Control of this complexity allows us to stop long-
lasting processes and those, that will certainly end up
with unacceptably complex models, without waiting
till the end of their adaptive processes (thus saving
computation time). In practice we use the Levin com-
plexity augmented by a measure of prediction of the
fitness of the resulting model. This extension is also
very important, because it lets us ignore some type of

machines which usually declare low complexity, but
have proven to be unsuccessful, so it is more reason-
able to try other, more complex machines but possibly
much more suitable. It is also sensible, to try from
time to time, some less convincing machine construc-
tions to leave some chance for a surprising invention.

As soon as the first model is built (regardless its
optimality) we may put restrictions on new machines
(both running time and model complexity). The meth-
ods, for which we can predict (or at least show lower
bounds of) model complexity and running time, are
put into the proper place in the queue of candidates,
that must be validated. The methods, for which the
prediction is not possible, are put to the queue on the
basis of a rough complexity prediction, and their exe-
cution is properly controlled. Thanks to using Levin-
like complexity, we may calculate the thresholds of
acceptable values of method run time and model com-
plexity. For estimating model complexity we use a
criterion resembling Minimum Description Length,
which reflects the numbers and types of values de-
scribing the model.

Such control of the search process results in test-
ing models (more or less) in the following order:

• simple methods of different types (e.g. classifiers
of different nature),

• combinations of different data transformation al-
gorithms (normalizations, feature selection, vec-
tor selection etc.) and methods specialized in
solving problems of the type (classifiers, approx-
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imators etc.),
• multiple data transformations, both sequential

(like standardization followed by feature selec-
tion) and parallel (like committees of feature se-
lection models),

• ensemble methods including committees re-
specting members’ competence.

Apart from searching for the optimal machines hi-
erarchy, our meta-learning algorithms perform some
searches for the optimal values of machines parame-
ters. The two types of search are in fact mixed into
a single search process. The results of parameters
searches are appropriately stored and then used also in
other machine configurations, however it must be em-
phasized here, that for example adding a data trans-
formation to a machine structure may significantly
change the task, so after such operation, additional
search for optimum parameter values of final decision
methods is necessary, though it can take advantage of
the results of previous searches for the same parame-
ters to adjust the density of the search.

Our system architecture includes a unified meta-
parameters description system, that allows meta-
search to control parameters of any machine avail-
able in the system without any knowledge of the in-
ternals of the machine. The descriptions usually in-
clude the information about the scope of sensible val-
ues and the type of the parameter changes (discrete,
linear, exponential etc.). Moreover, a meta-learner can
be provided with information about how to efficiently
perform the search (e.g. committee decision modules
should be tried just after the member-models have
been created, to reduce computation time). To avoid
repetitions in running adaptive processes we have cre-
ated a cache system, which, when asked again for the
same model, does not build it twice, but shares the
one created earlier (in future we plan also a cache sys-
tem which could save the data to a disk and load from
it when necessary—it will allow to take advantage of
the cache also between different instances of the sys-
tem, even running on different machines).

The main loop of our meta-search may be seen as
an infinite procedure, which tries more and more com-
plicated models for given data. After the first model
is built, at each time of the search, we can get the in-
formation about currently best model. Thus, there is
no single stop point of our meta-search. We may stop
after some pre-defined time, on user request, after ob-
taining appropriately small error, if no improvement
occurred within a time period etc.

We start with some meta-knowledge, which
continuously changes according to what we learn.
First meta-machines use only some general meta-
knowledge provided by experts, but then the meta-
knowledge may be appropriately adjusted and ex-
changed between different meta-learning methods. It
is very important to differentiate between the general
knowledge (averaged for all the data sets) and the
knowledge in the context of particular data, because
they should have different influence on the meta-
search.

6 Advanced techniques of meta-
learning

Meta-schemes provide very powerful means for meta-
search restriction and direction. The task of meta-
learning method designer (a human expert) is to de-
fine such set of meta-schemes and items to fill place-
holders, that allows to avoid spending time on testing
insensible model structures and to point out the most
promising structures. The task of meta-learning algo-
rithms that use meta-schemes is not only to search for
the most accurate solutions, but also to learn from the
search experience. Such learning includes:

• Finding the correlations of occurring different
items in most accurate results. It will enable
learning which data transformations are most
useful for given classification model, finding
some areas of model space with structures suc-
cessful in similar environment, so that a discov-
ery of a successful model structure, may be fol-
lowed by testing some other structures which
have performed similar in similar circumstances,
etc.

• Finding new successful complex structures and
converting them into meta-schemes (which we
call meta abstraction) by replacing proper sub-
structures by placeholders.

• Extracting meta-rules, describing the advanta-
geous directions of the search.

• Depositing the knowledge they gain in a reusable
meta-knowledge repository. The possibility to
exchange meta-learning experience is very pre-
cious, because saves much time—otherwise each
meta-learning method would have to learn from
scratch instead of taking advantage of what other
meta-learners have already gained.

It is important to provide a uniform representation
of the meta-knowledge, regardless its source, so that
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for example the knowledge may be exchanged, the ex-
pert knowledge may be extended, adjusted according
to performed tests, etc. It must be capable of express-
ing rules of miscellaneous types, concerning different
levels of abstraction, etc.

Exact representation of the meta-knowledge sat-
isfying these conditions is itself a subject for a broad
discussion, so we do not go into more details here.

7 Summary

We have presented basic ideas and some examples
of our meta-learning approaches based on intelligent
search. The major difference between our approach
and the ones described so far in the literature is that
the crucial part of our meta-learning is the heuristic
search continuously analyzing the feedback of run-
ning different tests. It gives much more possibilities
than providing simple rankings of methods and con-
structing committees of models.

The idea of meta-schemes is very precious tool in
defining heuristics for the search process. The meta
search starting with the simplest models and proceed-
ing to more and more complex ones by means of the
abstraction levels and Levin complexity control turned
out to be successful and promising, since its gates to
further development are open, and new directions of
advanced meta-learning are evident. We believe, that
quite soon such techniques will be more successful
than human driven searches.
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