
 A Hybrid Simulated Annealing and Threshold Accepting 
for Satisfiability Problems using Dynamically Cooling 

Schemes 

FELIX MARTINEZ-RIOS1 and JUAN FRAUSTO-SOLIS2 

1 Universidad Panamericana, Campus Ciudad de México 

 Augusto Rodín 498, Col. Insurgentes Mixcoac, 03920, Distrito Federal,  

México 

fmartin@up.edu.mx 
2 Tecnológico de Monterrey, Campus Cuernavaca 

Paseo de la Reforma 182-A, Col. Lomas de Cuernavaca, 62584, Morelos,  

México 

juan.frausto@itesm.mx 

 
 

 

Abstract: For Satisfiability (SAT) Problem there is not a deterministic algorithm able to solve it in a polynomial time. 

Simulated Annealing (SA) and similar algorithms like Threshold Accepting (TA) are able to find very good solutions of 

SAT instances only if their control parameters are correctly tuned. Classical TA usually uses the same Markov chain length 

for each temperature cycle but they spend a lot of time. In this paper a method based on the neighborhood structure to get 

the Markov chain length in a dynamical way for each temperature cycle is proposed. Three cooling schemes are also 

presented in the paper. The experimentation presented in the paper shows that the proposed method is more efficient than 

the classical one. 
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1 Introduction 

 
Satisfiability Problem (SAT) is a NP-complete 

problem (NP in short) which is fundamental to 

complexity theory [1,2] and is widely studied in 

several areas such as: planning, circuit testing, 

temporal reasoning, scheduling and many others 

[3]. Besides, any instance of a NP can be 

transformed to a SAT instance [4,5]. Therefore, if 

SAT can be solved efficiently with a particular 

algorithm A, then A will have a similar 

performance for any other NP. Since the seminal 

papers of Simulated Annealing algorithm (SA) 

[6,7], this algorithm has shown to be very efficient 

for solving combinatorial optimization. Due to this, 

new algorithms based on SA have been proposed; 

one of them is Threshold Accepting algorithm 

(TA) [8] which is similar to SA except for a small 

modification; this is done for reducing the 

execution time with similar quality of the final 

solution.  
 

In this paper an analytical adaptive method to 

establish the initial and final temperatures and the 

length of each Markov chain in a dynamic way for 

the TA algorithm is presented. Experimentation 

showing a set of SAT instances using three cooling 

schemes is also presented. 

 

2 Classic TA algorithm 

 
Threshold Accepting algorithm (TA) [8], is very 

similar to SA; it has been applied to many areas, such 

as Data Bases [9], Bin Packing [10] and many others. 

SA and TA accept bad solutions in order to escape of 

local optima. However, TA does not use Boltzmann 

Distribution to accept bat solution but a deterministic 

parameter named threshold. This parameter is usually 

the current temperature as is shown in Fig. 1.  

 

TA is similar to SA since it begins with a current 

solution Si from which a new solution Snew is 

generated. In the algorithm ci and cf represent the 

initial and final temperatures respectively. Notice that 

TA has also two cycles: the outer cycle (lines 2–9) 

that controls the threshold value (the current 

temperature c) and the inner cycle (lines 3–7) which 

makes a stochastic walk for each temperature cycle. 

In step 8 a new temperature is generated using a 
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cooling function [11]. A new solution is always 

accepted (line 5) if the cost of a new solution 

(Z(Snew)) is lower that the previous one (Z(Si)) or if 

their difference is smaller than the threshold 

parameter c. 

 

The outer loop parameters define the cooling scheme 

of TA: ci, cf, and the cooling function, which the most 

used are [11]: 

 

kk TT α=+1  (geometric) (1) 

kk TT )exp(1 α−=+  (exponential) (2) 

)ln(/1 αkk TT =+  (logarithmic) (3) 

 

 

The inner or Metropolis cycle is determined by the 

length of each Markov chain (i.e. its iterations’ 

number. 

 

 

1. Initialization (Si, c=ci) 

2. Repeat 

3.      Repeat 

4.          Snew = Generate (Si) 

5.          If Z(Snew) - Z(Sj) < c 

6.              Si = Snew 

7.      Until the equilibrium 

8.       c = New(α,c) 

9. Until (c=cf) 

 

Fig. 1.  Pseudo–code of  TA algorithm. 

 

 

2.1 Initial and final temperatures 

 
In TA, ci and cf are explicit bounds since they 

determine the beginning and the end of the process 

of it. At the beginning ci must be determined in a 

way that almost all the transitions may be accepted. 

If ci is too high TA will expend a lot of time, but if it 

is too small the probability to get stuck on local 

optima is high.  

 

On the other hand, if cf is set too high TA probably 

does not explore the desired area of the solution 

space. If cf is set to a very low value a lot of time 

will be wasted at the final of the process. In this 

paper ci and cf was fixed with the method suggested 

in [12]. In this sense, the neighborhood structure can 

be defined as follow:   

 

Definition 1: Let 

 

}:|,{ SSVVSVsetaSS
ii SSi →=⊂∃∈∀  

be the neighborhood of a solution Si, where iS∀  

is the neighborhood set of Si,  SSV →:  is a 

mapping and S is the solution space of the 

problem being solved.  

 

From this definition on can be noticed that the 

neighbors of Si depend only on the neighborhood 

structure V from every particular problem, and then 

the maximum and minimum cost increments 

produced from this neighborhood structure are [12]: 
 

 

)}()({
max ijV SZSZMaxZ −=∆

SSVS iSj i
∈∀∈∀ ,  

(4) 

)}()({
min ijV SZSZMinZ −=∆

SSVS iSj i
∈∀∈∀ ,  

(5) 

 

Then ci and cf parameters are calculated as the 

minimum and maximum deterioration of the 

objective function: 

 

maxVi Zc ∆=  (6) 

minVf Zc ∆≤  (7) 

 

Notice that SA, produces different ci and cf 

parameters because of  Boltzmann distribution [12]:  

 

 

))(ln( max

max

VA

V
i

ZP

Z
c

∆
∆−

=  
(8) 

))(ln( min

min

VA

V
f

ZP

Z
c

∆
∆−

=  
(9) 

 

In both cases, at the beginning of the process, the 

probability to accept any proposed new solution is 

too high, but it is reduced as the temperature is 

decreased. Thus, the acceptance probability for very 

high temperatures )( maxVA ZP ∆ is near to 1 but for 

low temperatures )( minVA ZP ∆ is close to zero [13]. 
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2.2 Markov Chains Length 
 

TA makes a stochastic walk on the solution space 

which can be modeled as a sequence of 

homogeneous Markov chains using descending 

values of the control parameter c > 0. Let Lk >0 be 

the length of each Markov chain for any temperature 

cycle ck (k represents the sequence index), which 

must satisfy:  

 

1,,0lim 1 ≥∀≥= +∞→
kccc kkk

k
 (10) 

 

ck and Lk have a strong relation, because when 

0, →∞→ kk Lc  and when ∞→→ kk Lc ,0 .  

 

The length of the Markov Chain in TA can be taken 

in the same way that SA, assuming that an iterative 

use of threshold functions emulates the Boltzmann 

distribution.  Therefore using the SA results for the 

inner loop the next tuning parameters are obtained 

for TA: The maximum Markov chain Lmax occurs at 

the final temperature and it is: 

 

iSiR VSPLnL ))((max −=  
(11) 

 

 Where 
iS

V is the neighborhood size and )( iR SP is 

the rejection probability for a solution Si (or a 

proportion of the solution space).  

 

We can define ))(( iR SPLnC −= . C 

ranges from 1 to 4.6 which guarantee a good 

exploration level of the neighborhood at the final 

temperature; for instance if C=4.6 then PR represents 

the exploration of 99% of the solution space. 

Therefore ( )
iSk VgL = ; this function gives the 

maximum number of samples that must be taken 

from the neighborhood VSi in order to evaluate an 

expected fraction of different solutions in a Markov 

chain. Lk depends only on the number of elements of 

VSi that will be explored at ck. 

 

Because the strong relation between ck and Lk, at the 

beginning of the process (ck = ci), any solution have 

the same acceptance probability. Therefore, the first 

Markov chain length must be very small (L1 ≈ 1) 

because its stationary probabilistic state is reached in 

only one iteration. When k is increased, ck is 

decremented until it reaches cf. Therefore, for 

consecutive values of ck, TA is forced to increment 

its Markov chain length in order to reach its 

stationary probabilistic state. Thus, Lk is 

incremented since one at ci until Lmax at cf An 

incremental Markov chain function can be proposed 

as: kk LL β=+1  where 1>β and Lk is the length of 

the Markov chain at ck, Lk+1 represents the length of 

the Markov chain at ck+1 and β  is the increment 

coefficient.  

 

Because the Markov chain length is incremented 

from L1 to Lmax when ck varies from c1 to cf in a 

Markov process we have 1max LL nβ=  and: 

 








 −
=

n

LLnLLn )()(
exp 1maxβ  

(12) 

 

For each cooling scheme (Equations 1,2,3) the n 

number of steps performed from ci to cf can be 

calculated from the next formulae derived from their 

cooling function: 
 

)(

)()(

αLn

cLncLn
n

if −
=  

(13) 

α
)()( fi cLncLn

n
−

=  
(14) 

))(( αLnLn

c

c
Ln

n
f

i












=  

(15) 

 

 

. 

3    Experiment proposal 

 
TA can be executed with its own parameters or with 

some of them taken from SA. Therefore we tested 

the following cases: 

 

1. TA pure: ci and cf are calculated using Equation 

6 and 7 respectively. 

2. TA with final temperature of SA: ci obtained by 

TA pure (Equation 7) but cf calculated as SA 

using Equation 9. 

3. TA with initial temperature of SA: cf obtained 

by TA pure but (Equation 6) ci calculated as 

SA, using Equation 8. 
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4. TA hybridized with SA: ci and cf are calculated 

as TA (Equation 6 and 7) pure when c=cf then 

running SA with the last solution obtained by 

TA, and cf is calculated as SA using Equation 

7. 

 

Table 1 shows several SAT instances with different 

σ  relations of clauses/variables [14]; they were 

taken from SATLIB or generated with Hories 

algorithm [15]. The measurement of efficiency is 

based on the execution time; a quality solution 

measure is defined as the percentage of “true” 

clauses with respect to the total clauses in an 

instance at the end of the execution program. Both 

algorithms were implemented in a Dell Intel Core 

Duo with 2 Gb of RAM memory and Pentium 4 

processor running at 2.40 GHz. Each instance was 

executed 40 times and the average execution time 

and the average quality solution were obtained. The 

quality solution was calculated by:  

 

100×=
clausestotal

trueclauses
Q  

(16) 

 

The Alpha’s value used for each cooling scheme 

(Equations 1,2,3) was obtained experimentally as 

0.99, 0.01 and 2.745 respectively 

Table 1. SAT instances tested. 

Sat Instance σ  Sat Instance σ  

aim-50-1_6-yes1-3 1.60 par8-5-c 3.97 

aim-50-1_6-no-2 1.60 G2_V100_C400_P4_I1 4.00 

aim-100-1_6-yes1-1 1.60 hole8 4.13 

aim-200-1_6-no-1 1.60 uuf225-045 4.27 

aim-50-2_0-no-4 2.00 RTI_k3_n100_m429_150 4.29 

aim-50-2_0-yes1-1 2.00 uuf100-0789 4.30 

aim-50-2_0-no-3 2.00 Uf175-023 4.30 

G2_V100_C200_P2_I1 2.00 Uf50-01 4.36 

dubois21 2.67 uuf50-01 4.36 

dubois26 2.67 Ii8a2 4.44 

dubois27 2.67 G2_V50_C250_P5_I1 5.00 

BMS_k3_n100_m429_161 2.83 hole10 5.10 

G2_V50_C150_P3_I1 3.00 Ii32e1 5.34 

G2_V300_C900_P3_I1 3.00 Anomaly 5.44 

BMS_k3_n100_m429_368 3.08 aim-50-6_0-yes1-1 6.00 

hole6 3.17 G2_V50_C300_P6_I1 6.00 

par8-1 3.28 Jnh201 8.00 

aim-50-3_4-yes1-2 3.40 Jnh215 8.00 

hole7 3.64 Medium 8.22 

par8-3-c 3.97 Jnh301 9.00 

 

 

 

4 Experiment results 

 
In Figure 2 we can observe the quality solution Q 

obtained by using Equation 16; to obtain these 

results the quality solution was calculated for each  

instance and the average was obtained for each 

cooling scheme.  

 

For each cooling scheme its correspondent number 

of steps in the Metropolis cycle was calculated; the 

initial and final temperature were calculated with the 

model presented in section 3.  

As we can notice in Figure 2 the best results for the 

quality solution measure were obtained with the 

hybrid algorithm which the final temperature used is 

just cf of SA. 

 
Figure 3 shows that the better execution time is 

obtained when the temperatures were calculated 

with TA equations (Equations 6 and 7). The 

execution times obtained by using schemes 3 and 4 

described in section 3 are also very good. 

 

 
 

Fig. 2. Quality solutions using Equation 16. 

 

 

 
 

Fig. 3. Execution times. 

 
Based on the fact that a good criterion for comparing 

random algorithms is very good quality with 

reasonable time, the algorithms presented here are 

listed from the best to the worst as follows: 
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1. TA hybridized with SA. 
2. TA with final temperature of SA. 

3. TA pure 

4. TA with initial temperature of SA. 

 

 

 

5 Conclusion 
 

In this paper a method based on the neighborhood 

structure to get the Markov chain length in a 

dynamical way for each temperature cycle is 

proposed. 

 

Experiments showed that TA hybridized with SA has 

excellent performance based on its quality solution 

and its execution time. In this algorithm each SAT 

instance is executed with a TA algorithm but when its 

temperature parameter reaches c=cf (cf calculated for 

TA) then is executed a SA algorithm with the better 

solution obtained in TA. 
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