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Abstract:  In this paper a novel algorithm for lossless compression of volumetric data is presented. This algorithm is 
based on our previously presented algorithm for lossless compression of volumetric data, which uses quadtree 
encoding of slices of data for discovering the coherence and similarities between consecutive slices.  By exploiting 
these properties of the data, the algorithm can efficiently compress volumetric datasets.  In this paper we upgrade the 
basic algorithm by introducing several new routines for determination of coherence and similarities between slices, as 
well as some new entropy encoding techniques. With this approach, we managed to additionally improve the 
compression ratio of the algorithm. Presented algorithm has two significant properties. Firstly, it is designed for 
lossless compression of volumetric data, which is not the case with most of existing algorithms for compression of 
voxel data, but this is a very important feature in some fields, i.e. medicine. Secondly, the algorithm supports 
progressive reconstruction of volumetric data and is therefore appropriate for visualization of compressed volumetric 
datasets over the internet.  
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1 Introduction 
Voxel data have become an asserted mean when 
representation of interiors of geometric objects is 
required. Their elemental parts are called voxels. Voxels 
are smallest discrete parts that can store information 
about the substance that covers that part of space [1]. 
Medical applications represent a field where 
representation of objects in form of voxel data is most 
common. In medicine voxel datasets are usually 
obtained with computerized tomography (CT) or 
magnetic resonance imaging (MRI) [2, 3]. The output of 
the CT and MRI scanners is usually a set of two 
dimensional raster images called slices. If those slices 
are arranged in space one after another along the depth 
axis, a complete description of the observed object is 
obtained. Besides medicine voxel representation of data 
is also often used in computational fluid dynamics 
(CFD), geology and even in terrain visualization (i.e. 
representation of water). In the past, majority of research 
in the field of voxel graphics was related to 
visualization. Recently, due to significant progress in 
graphics hardware, real-time or near real-time volume 
visualization has become possible [4, 5, 6].  
     However, two considerable problems still exist: the 
storing of voxel data and the transfer of voxel data 
through the Internet. This is due to the extreme size of 
voxel data. For example, a typical medical voxel dataset 

can occupy up to few hundred megabytes of data. 
Compression algorithms are generally used for reducing 
the size of the data. General-purpose algorithms, such as 
ZIP occur as the first solution. However, general purpose 
algorithms cannot achieve maximal efficiency as they do 
not exploit special properties, like homogeneity and 
coherence, of voxel data. A much more efficient 
compression can be achieved with the special-purpose 
algorithms for the compression of voxel data.  
     We have already performed some significant research 
in the field of compression of volumetric data. Our 
initial algorithm for compression of volumetric data, 
which uses the determination of coherence and 
similarities of consecutive slices for efficient 
compression, has already been presented in a paper 
authored by Klajnšek and Žalik in 2005 [7]. In this paper 
we introduce new techniques for determination of 
similarities between consecutive slices and entropy 
encoding, which significantly improve the compression 
ratio of the basic algorithm.  
  The paper consists of four sections. After a short 
introduction, we present the previous work that has been 
carried out in the field of compression of voxel data. In 
the third section we present our algorithm for 
compression of volumetric data. In subsection 3.1 a 
basic idea behind the algorithm is presented. Subsection 
3.2 introduces our novel techniques that improve the 
efficiency of the basic algorithm and therefore represents 
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the core of the paper. In subsection 3.3 we present 
practical results of the usage of algorithm. In the last 
section the work presented in the paper is evaluated.  
 
    

2   Previous work 
Several algorithms for compression of volumetric data 
have already been presented, however neither one of 
them has become popular enough to become a standard. 
Most of the presented algorithms are oriented towards 
lossy compression. The reason for this is that a while ago 
it was not possible to load a complete voxel dataset into 
memory from where it could be visualized. In the rest of 
the section we present some of the more important 
algorithms for compression of volumetric data. Besides 
those algorithms several additional algorithms exist, but 
majority of them are based on the presented ideas and 
only introduce some upgrades as for example new 
approach to entropy encoding.  
     The first voxel compression method was introduced 
in 1992 by Hesselink and Ning, and was called vector 
quantization [8, 9]. The basic idea of the algorithm is 
that instead of storing the actual value of the voxel, the 
codeword is stored. Usually, the bit-length of the 
codeword is shorter than the bit-length used for storing 
actual value and thus the compression is achieved. 
Obviously, this compression method performs lossy 
compression. 
     Second algorithm for compression of volumetric 
datasets was presented by Muraki in 1993 [10]. The idea 
behind this method is that the voxel space is at first 
divided into subspaces. These subspaces are then 
encoded using wavelet transformations. Method 
introduced by Muraki is very important as a lot of 
existing advanced compression methods today are based 
on this approach. While it is possible to perform lossless 
compression using wavelet encoding [11, 12] majority of 
existing wavelet based compression methods, including 
Muraki’s, support only lossy compression. 
     In 1994 Fowler and Yagel introduced the first 
algorithm for lossless compression of voxel data [13]. 
Presented algorithm uses a combination of differential 
pulse code modulation (DPCM) and Huffman coding. 
DPCM technique belongs into a set of compression 
methods called predictive techniques. The value of the 
next voxel in the dataset is always predicted from the 
previous samples and the difference between the 
predicted and actual value is stored instead of actual 
value. 
     Yeo and Liu introduced a method for compression of 
voxel data based on discrete cosine transform (DCT) in 
1995 [14].  This algorithm at first divides the voxel 
space into blocks consisting of 8×8×8 voxels. Each of 
blocks is then encoded with the DCT. In the third step 
the algorithm performs the scalar quantization on the 

obtained DCT coefficients. In the last step entropy 
encoding is performed using a combination of run-length 
encoding and Huffman coding. Because the method uses 
scalar quantization in the process it performs lossy 
compression. 
     Chiueh et al. presented an algorithm for compression 
of voxel data, which uses discrete Fourier transform 
(DFT) in 1997 [15]. Idea behind the algorithm is very 
similar to the previously described algorithm presented 
by Yeo and Liu. At first the DFT is performed over 
blocks of voxel data to obtain Fourier coefficients. Then 
the obtained coefficients are quantized and the entropy 
encoding is performed. Because of quantization this 
algorithm also performs lossy compression. 
     Zhu et al. presented another wavelet based algorithm 
for compression of voxel data in 1997 [16]. Their 
approach applies the wavelet transformation twice. At 
first the wavelet transformation is performed over the 
whole voxel space. After initial transformation, the 
algorithm determines interesting structures and 
homogeneous areas in the data and encodes these areas 
with an octree. The second wavelet transformation is 
then applied on the non-empty and non-homogeneous 
blocks of data. This method also performs lossy 
compression. 
     In 1999 Rodler introduced an algorithm for 
compression of volumetric data that was significantly 
different from all previously presented algorithms [17]. 
While other algorithms consider the whole voxel space 
as a whole entity, Rodler’s algorithm considers the voxel 
space a set of arranged slices. By using this approach the 
compression of volumetric datasets becomes very 
similar to the compression of digital video and the 
introduced algorithm uses many ideas from this field. In 
the first step the ‘temporal’ prediction is used for 
determining the correlation between consecutive slices. 
In the second step 2D wavelet transformation is 
performed over the ‘predicted’ slices. Then the obtained 
coefficients which lie under the set threshold are 
removed and at the end the remaining coefficients are 
quantized. Due to usage of quantization and thresholding 
this approach performs lossy compression. 
 
 

3   Problem Solution 
As has been already stated, despite the existence of 
many algorithms for compression of voxel data none of 
them has yet become an official or even ‘unofficial’ 
standard. It is also hard to even pick one algorithm as the 
best, as every one of them has some advantages as well 
as disadvantages. For instance, most of the existing 
algorithms are strictly oriented towards lossy 
compression, which in unacceptable in some fields, 
especially medicine. Therefore it is our idea to develop 
an algorithm that would try to use as many advantages of 
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the other algorithms, while overcoming most of the 
disadvantages. Although the algorithm presented in this 
paper does not reach the desired goal yet, it represents, 
in our opinion, a big step in the right direction.  
     The proposed algorithm is based on encoding of the 
slices of voxel data with quadtrees and uses comparison 
of the quadtrees related to neighboring slices for 
determination of data coherence. Each slice is split into 
small patches called macro-blocks as first. This approach 
is very similar to the techniques used in algorithms for 
the compression of digital video. However, algorithms 
for the compression of digital video usually use macro-
blocks of constant size, while in our algorithm the size of 
the macro-block is variable. Macro-blocks that are 
connected to the nodes of the lowest level of the related 
quadtree are called basic macro-blocks. The size of the 
basic macro-blocks is usually 4×4 or 8×8 voxels. In the 
following subsection we present the basic idea behind 
the algorithm 
 
3.1 Basic algorithm 
For clearance we will at first give description of the 
basic quadtree based compression algorithm that was 
presented in [7]. The algorithm for the lossless 
compression of voxel data using quadtrees consists of 
four steps: 
• creation of the division tree, 
• creation of quadtrees for all slices, 
• calculation of difference trees for neighboring slice 

and 
• entropy encoding. 
 

A detailed description of each step is given in the 
continuation of the paper. 
 
3.1.1 Creation of the division tree 

Creation of the division tree represents the first step of 
the compression algorithm. Division tree is a fully-
grown quadtree. Nodes of the division tree carry 
information about the macro-blocks of the mask slice. 
Mask slice is an empty slice that is split into macro-
blocks, which are arranged accordingly to the following 
rule (called a row order rule): 
     

 At level i the number of macro-blocks is 4i-1 and the 

number of macro-blocks in one row is 2i-1. If the index 

of the starting macro-block of the row is n, then the 

following macro-blocks of the same row are indexed 

n+1, n+2, …, n+2i-1. 

 
Each node of the division tree carries the information of 
starting coordinates and the size of the macro block 
which it represents. Division tree is useful because all 
the slices are represented by the same macro-block 
structure. By using the division tree we have to store the 

information about the position and the size of the macro 
blocks only once. 
 
3.1.2 Creation of slice quadtrees 

In the second step of the algorithm each slice of voxel 
data is encoded with a quadtree. These quadtrees are 
called slice quadtrees. Each slice is divided into small 
patches, called basic macro-blocks, at first. For each 
basic macro-block the average value of the voxels in the 
macro-block is calculated.  
For each basic macro-block we must also determine 
whether is it homogeneous (all voxels in the macro-
block are the same) or non-homogeneous (voxels are not 
the same). This information is stored into the appropriate 
node of the slice quadtree. The nodes of slice quadtrees 
carry the following information: 
• index – defines mapping between the macro-block 

and the adequate node in the division tree, 
• node type – depends on the position of the node in 

the quadtree and the values of voxels in the related 
macro-block, 

• average value – average value of the voxels in the 
macro-block, 

• pointer to voxel array – a pointer to an external array 
of voxel values. When we come across a non-
homogeneous basic macro-block the values of the 
voxels have to be stored in an external array. 

 

Encoding of basic macro-blocks produces the nodes of 
the lowest level of the slice quadtree. The nodes of 
higher levels are obtained with pruning. The pruning 
process follows this simple rule: 
 
If all sons of the current node represent homogeneous 

macro-blocks with the same average value, then they are 

joined into one larger homogenous macro-block. 

 

When such a case occurs, the average value of sons is 
forwarded into the father node and all four sons are 
removed from the quadtree. If the pruning can not be 
performed, the average value of the father node is 
calculated from the average values of all four sons.  In 
this case the father node is an inner node (branch) in the 
quadtree. Regarding the position of the node and the 
properties of the related macro-block we can now define 
three different node types: 
• Type 1 – the node is an inner node – branch of the 

quadtree. Such node represents a non-homogeneous 
macro-block, which consist of smaller macro-blocks. 

• Type 2 – the node represent homogeneous macro-
block. The nodes of this type represent the leaves of 
the quadtree. However, this leaves are not always on 
the lowest level of the quadtree. Since we used 
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pruning in the process the slice quadtrees are not 
fully-grown quadtrees. 

• Type 3 – the node represents a non-homogeneous 
basic macro-block. Such node can only appear on the 
lowest level of the quadtree. The voxels of the related 
basic macro-block must be stored into an external 
array. The address of the array is stored into the 
pointer to voxel array.   

 
The pruning process is repeated until the nodes of the 
highest level are created. In this way the slice quadtree 
for one slice is created. This process must be repeated 
for all slices. As a final result a set of slice quadtrees is 
obtained. 
 
3.1.3 Calculation of slice quadtrees 

When the slice quadtrees of all slices are created we can 
start determining the similarities between neighboring 
slices. For this we use special trees, called difference 
trees. A difference tree is a fully-grown quadtree used 
for determining equal nodes in two quadtrees. Nodes of 
the difference tree have just one parameter: 
• IsEqual – which marks whether two adequate nodes 

that belong to two slice quadtrees of neighboring 
slices are equal or not. 

 
Four tests have to be performed for comparison of two 
nodes: 
• comparison of node types, 
• comparison of average values, 
• comparison of sons, if both compared nodes are inner 

nodes of the quadtree, 
• comparison of voxels, if both compared nodes 

represent non-homogeneous basic macro-blocks. 
 

3.1.4 Entropy encoding 

In the last step the remaining information are stored. For 
more efficient compression we use special entropy 
encoding algorithms. The data are stored into two files: 
• quadtree structures file (QSF) – stores the 

information about the quadtrees,  
• voxel data file (VXF) – stores the values of voxels of 

non-homogeneous basic macro-blocks. We 
previously stored this voxels into external arrays 
using pointers to voxel arrays. 

 
We will not provide the actual entropy encoding 
algorithm used for encoding the QSF here, because it is 
not necessary for understanding the basic idea behind 
the algorithm. However, the detailed description can be 
found in [7]. The entropy encoding algorithm which is 
used for storing values of voxels into the voxel data file 
is based on the idea that instead of storing the actual 
values of voxels, the difference to the average value of 

the macro-block is stored. Of course, only the minimal 
number of bits required for storing the biggest difference 
is used for representation of all difference values of the 
macro block.  
 
3.2 Advanced algorithm 
Advanced algorithm introduces several new techniques 
for determination of coherence and similarities and 
entropy encoding. These techniques are used for storing 
the values in the voxel data file. We introduce eight 
different types of coding by which the values of voxels 
of the non-homogeneous basic macro blocks can be 
encoded. This coding types can be separated into two 
large groups each consisting of four types of encoding. 
The first group of coding types exploits only the 
properties of the macro-block currently being processed. 
The second group of coding types performs analytical 
comparison to the adequate macro-block on the previous 
slice (called reference macro-block) and exploits the 
differences between macro-blocks for more efficient 
encoding.  
     Clearly, the best possible type of encoding must be 
determined before the data is actually stored. To select 
the best encoding the typical properties of the macro-
block must be determined at first (average value of the 
voxels in the macro-block, maximal absolute data value 
in the macro-block, maximal difference to the average 
value, number of voxels that are different between the 
processed macro-block and the reference macro-block). 
Using these properties we can mathematically determine 
the number of bits required for storing the data for each 
coding type. The coding type that requires the lowest 
number of bits is then used for actual storage of the data.  
     In the continuation we give a short description of 
each of the coding types. Along with the textual 
description of the coding types we also present the bit- 
mask for each coding. Although bit-masks differ from 
one coding type to another all coding types include two 
common parts. The first common part is the type 
number. The type number is a value between 0 and 7 and 
is always stored in the first three bits and is required for 
the decompression algorithm to choose the correct 
decompression routine. The second common part is 
number of bits used for storing the values of the macro-
block. Number of bits used for storing the values can of 
course differ depending on which type of coding the 
algorithm decides to use. The position of this value in 
the bit-mask is not the same in all coding types. Let us 
remark here, that in the provided graphical 
representations of the bit-masks, four bits are used for 
storing the number of bits used for value representation. 
This of course means that only 1-16 bits can be used for 
representing values. However, in the actual 
implementation we could simply resize the reserved 
space from four to five or more bits if necessary. 
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3.2.1 Coding macro-blocks using analysis of the 

properties of the macro-block 

 
3.2.1.1 Encoding macro-blocks by storing the 
differences to the average value.  
This coding type is used for storing the differences to the 
average value of the voxels in the macro-block. So, 
instead of the absolute value of the each voxel a 
difference to the average value is stored for each voxel. 
Bit mask of this coding type is: 
 

0 0 00 110 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 ...
type no. of bits

for value
value 1 value 2 value n

 
 

3.2.1.2 Encoding macro-blocks by storing absolute voxel 
values 
This coding type is very similar to coding type 1. The 
only difference is that the actual value of the appropriate 
voxel is stored.  
 

0 0 00 110 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 ...
type no. of bits

for value
value 1 value 2 value n

 
 
3.2.1.3 Encoding macro-blocks using run-length 
encoding 
The third coding type represents the macro block by 
using run-length encoding (RLE). The RLE can be 
performed in either horizontal or vertical direction, thus 
we can represent the coding direction with just one bit, 
which immediately follows the type number. The bit-
mask of this coding type is 
 

0 0 10 001 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 ...
type no. of bits

for value
value 1 number

of repeats
value 2

0 0 1 1
number
of repeats

dir.

 
 

3.2.1.4 Encoding single voxels 
It often happens that all of the voxels in a macro block 
except one represent empty space. We introduce a 
special coding type for representing such macro blocks. 
This coding type only stores the value of the voxel and 
the position of that voxel inside the macro-block. Here is 
the bit-mask: 
 

0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1
type no. of bits

for value
value position

 
 
3.2.2 Coding macro-blocks using the analytical 

comparison to the reference macro-block in the 

previous slice 

The second group of coding types consists of coding 
types which are based on the comparison of the 
processed macro-block with the adequate macro-block 

on the previous slice. Such macro-block is called a 
reference macro-block. However, for better compression 
we also compare the processed macro block with slightly 
offset reference macro-blocks. This is useful as some 
entities can slightly move, grow or shrink from one slice 
to another, as shown in Fig. 1. We can efficiently 
determine and exploit these occurrences by using offset 
reference macro blocks. 
 

      
 
Fig. 1: Two adjacent slices taken from a real dataset with 

marked significant differences. 
 
3.2.2.1 Encoding macro-blocks by storing the 
differences to the values of the reference macro-block 
Using this coding we calculate the difference between 
the value of the voxel in the processed macro-block and 
the corresponding voxel in the reference macro-block 
and store those differences. Bit mask of the coding type, 
if the position of the reference macro-block corresponds 
to the position of the processed macro-block is: 
 

1 1 00 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 ...
type no. of bits

for value
difference 1 difference 2

0 0 1 1
difference noffset:

no  
 
Bit mask for the case where the offset reference macro 
block was used: 
 

1 1 00 0 0 1 0 10 1 0 1 0 ...
type no. of bits

for value
x

offset

1 0 1 1
difference noffset:

yes

1 0 1 0 1
difference 1

1
y

offset  
 
The difference between the bit-mask for using non-offset 
and bit-mask for using offset reference macro-blocks is 
the same for all coding types. Therefore, in the 
continuation we will present only the bit-mask for non-
offset reference macro-blocks. 
 
3.2.2.2 Encoding macro-blocks by using the masking 
table and storing the differences to the values of the 
reference macro-block 
This coding type expands the coding type presented in 
3.2.2.1 by introducing the mask table. The mask table 
tells which voxels on the processed macro-block actually 
differ from corresponding voxels in the reference macro-
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block. If the voxels are equal we store the value 0 into 
the appropriate position in the mask table. However, if 
the voxels are different, we store the value 1 into the 
appropriate position in the mask table and store the 
difference. Bit-mask: 
 
1 0 00 1 0 1 0 1 1 0 1 1 1 ...
type no. of bits

for value
mask table

0 0 1 0
difference n2offset:

no

1 0 0 0 1
difference n1

1...

 
 
3.2.2.3 Encoding macro-blocks by using the masking 
table and storing the differences to the average value 
This coding type is very similar to coding type 3.2.2.2. 
Again the mask table is used to mark which voxels 
differ, however, instead of storing the difference 
between the values of corresponding voxels, the 
difference between the voxel value and the average 
value of the macro-block is stored. Bit-mask: 
 
1 0 01 0 0 1 0 1 1 0 1 1 1 ...
type no. of bits

for value
mask table

0 0 1 0
offset:
no

1 0 0 0 1
offset to avg.
value n1

1...
offset to avg.
value n2  

 
3.2.2.4 Encoding macro-blocks by selecting the smaller 
value from the difference to the value of the reference 
macro-block and the difference to the average value 
The last coding type introduces a combination of two 
previously described coding types. Again, the mask table 
is used, but the mask table has a slightly different 
meaning in this coding. At first we calculate the 
difference between the value of the voxel and the value 
of corresponding voxel in the reference macro-block 
(lets call this value difference). Then we calculate the 
difference between the voxel value and the average 
value of the macro block (lets call this value offset to 
average). If difference is smaller than offset to average, 
then we write 1 in the appropriate position in the mask 
table and store the difference, otherwise we enter 0 into 
the mask table and store the offset to average. The bit-
mask of this coding looks like: 
 
1 0 01 1 0 1 0 1 1 0 1 1 1 ...
type no. of bits

for value
mask table

0 0 1 0
offset:
no

1 0 0 0 1
difference or 
offset to avg.

1...
difference or
offset to avg.  

 
3.3 Results 
Presented algorithm has been tested on various real 
voxel datasets. Tests have proven that the presented 
algorithm can efficiently compress various types of 
volumetric data without losses. The achieved 
compression ratio is between 2.5 and 4.5. Detailed 
results are presented in Table 1. We have also compared 
our compression algorithm to the two most popular 
general-purpose compression methods ZIP and RAR. In 
about 80% of cases our special-purpose algorithm 
performed better compression. However, we must also 

take into consideration that the quadtree based 
compression supports progressive reconstruction, which 
is impossible if the data is compressed using a general-
purpose compression algorithm. An example of 
progressive reconstruction and visualization of a voxel 
dataset is shown in Fig. 2. 
 

Quadtree based compression Dataset Original 
size QSF 

(KB) 
VXF 
(KB) 

Together 
(KB) 

Human 217.600 9.395 45.086 54.481 
Bunny 184.832 2.595 54.233 56.828 
Pelvis 89.088 975 21.578 22.553 
Backpack 190.976 2.338 41.360 43.698 
Colon  226.304 3.425 91.345 94.770 
Aneurism I 262.144 3.541 89.442 92.983 
Liver 119.808 2.036 48.011 50.047 
CT head 14.464 225 5.122 5.347 
MR brain 13.952 216 6.203 6.419 
Engine 14.080 231 4.040 4.271 
Head 20.352 310 6.536 6.846 
Tooth 20.608 198 3.999 4.197 
Aneurism II 16.384 75 272 347 
Foot 16.384 248 4.056 4.304 
Bonsai 16.384 260 2.808 3.068 
Skull 16.384 474 8.923 9.397 
Teapot 11.392 164 1.015 1.179 

 

Table 1: Results of the usage of the quadtree-based 
algorithm for compression of volumetric data on various 

real datasets. 
 

     
a)                                                   b) 

   
c) d) 

 
Fig. 2: Progressive reconstruction and visualization 

shown on the Aneurism dataset. 
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4   Conclusion 
In the paper we have presented a novel algorithm for 
lossless compression of volumetric data. While the basic 
idea of the algorithm is the same as in our previously 
published work, we upgraded the algorithm by 
introducing several new techniques for determination of 
similarities between slices of voxel data and entropy 
encoding. These new techniques significantly improve 
the efficiency of the algorithm, what has been proven by 
testing the algorithm on various datasets. 
     In the future we will try to additionally improve the 
efficiency of the algorithm by introducing some 
techniques that have until now only been used in lossy 
compression algorithms. We would also like to expand 
our algorithm into 4D space, so that it could also be used 
for compression of time-varying volumetric datasets. 
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