
An improved quadtree-based algorithm for lossless compression of

volumetric datasets

GREGOR KLAJNŠEK, BOJAN RUPNIK, DENIS ŠPELIČ
Laboratory for Geometric Modeling and Multimedia Algorithms,

Institute of Computer Science
Faculty of Electrical Engineering and Computer Science, University of Maribor

Smetanova ul. 17, SI-2000 Maribor
SLOVENIA

gregor.klajnsek@uni-mb.si http://gemma.uni-mb.si

Abstract: In this paper a novel algorithm for lossless compression of volumetric data is presented. This algorithm is
based on our previously presented algorithm for lossless compression of volumetric data, which uses quadtree
encoding of slices of data for discovering the coherence and similarities between consecutive slices. By exploiting
these properties of the data, the algorithm can efficiently compress volumetric datasets. In this paper we upgrade the
basic algorithm by introducing several new routines for determination of coherence and similarities between slices, as
well as some new entropy encoding techniques. With this approach, we managed to additionally improve the
compression ratio of the algorithm. Presented algorithm has two significant properties. Firstly, it is designed for
lossless compression of volumetric data, which is not the case with most of existing algorithms for compression of
voxel data, but this is a very important feature in some fields, i.e. medicine. Secondly, the algorithm supports
progressive reconstruction of volumetric data and is therefore appropriate for visualization of compressed volumetric
datasets over the internet.

Key-Words: Volumetric Data, Voxels, Compression, Lossless Compression, Quadtree Encoding

1 Introduction
Voxel data have become an asserted mean when
representation of interiors of geometric objects is
required. Their elemental parts are called voxels. Voxels
are smallest discrete parts that can store information
about the substance that covers that part of space [1].
Medical applications represent a field where
representation of objects in form of voxel data is most
common. In medicine voxel datasets are usually
obtained with computerized tomography (CT) or
magnetic resonance imaging (MRI) [2, 3]. The output of
the CT and MRI scanners is usually a set of two
dimensional raster images called slices. If those slices
are arranged in space one after another along the depth
axis, a complete description of the observed object is
obtained. Besides medicine voxel representation of data
is also often used in computational fluid dynamics
(CFD), geology and even in terrain visualization (i.e.
representation of water). In the past, majority of research
in the field of voxel graphics was related to
visualization. Recently, due to significant progress in
graphics hardware, real-time or near real-time volume
visualization has become possible [4, 5, 6].
 However, two considerable problems still exist: the
storing of voxel data and the transfer of voxel data
through the Internet. This is due to the extreme size of
voxel data. For example, a typical medical voxel dataset

can occupy up to few hundred megabytes of data.
Compression algorithms are generally used for reducing
the size of the data. General-purpose algorithms, such as
ZIP occur as the first solution. However, general purpose
algorithms cannot achieve maximal efficiency as they do
not exploit special properties, like homogeneity and
coherence, of voxel data. A much more efficient
compression can be achieved with the special-purpose
algorithms for the compression of voxel data.
 We have already performed some significant research
in the field of compression of volumetric data. Our
initial algorithm for compression of volumetric data,
which uses the determination of coherence and
similarities of consecutive slices for efficient
compression, has already been presented in a paper
authored by Klajnšek and Žalik in 2005 [7]. In this paper
we introduce new techniques for determination of
similarities between consecutive slices and entropy
encoding, which significantly improve the compression
ratio of the basic algorithm.
 The paper consists of four sections. After a short
introduction, we present the previous work that has been
carried out in the field of compression of voxel data. In
the third section we present our algorithm for
compression of volumetric data. In subsection 3.1 a
basic idea behind the algorithm is presented. Subsection
3.2 introduces our novel techniques that improve the
efficiency of the basic algorithm and therefore represents

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 264

the core of the paper. In subsection 3.3 we present
practical results of the usage of algorithm. In the last
section the work presented in the paper is evaluated.

2 Previous work
Several algorithms for compression of volumetric data
have already been presented, however neither one of
them has become popular enough to become a standard.
Most of the presented algorithms are oriented towards
lossy compression. The reason for this is that a while ago
it was not possible to load a complete voxel dataset into
memory from where it could be visualized. In the rest of
the section we present some of the more important
algorithms for compression of volumetric data. Besides
those algorithms several additional algorithms exist, but
majority of them are based on the presented ideas and
only introduce some upgrades as for example new
approach to entropy encoding.
 The first voxel compression method was introduced
in 1992 by Hesselink and Ning, and was called vector
quantization [8, 9]. The basic idea of the algorithm is
that instead of storing the actual value of the voxel, the
codeword is stored. Usually, the bit-length of the
codeword is shorter than the bit-length used for storing
actual value and thus the compression is achieved.
Obviously, this compression method performs lossy
compression.
 Second algorithm for compression of volumetric
datasets was presented by Muraki in 1993 [10]. The idea
behind this method is that the voxel space is at first
divided into subspaces. These subspaces are then
encoded using wavelet transformations. Method
introduced by Muraki is very important as a lot of
existing advanced compression methods today are based
on this approach. While it is possible to perform lossless
compression using wavelet encoding [11, 12] majority of
existing wavelet based compression methods, including
Muraki’s, support only lossy compression.
 In 1994 Fowler and Yagel introduced the first
algorithm for lossless compression of voxel data [13].
Presented algorithm uses a combination of differential
pulse code modulation (DPCM) and Huffman coding.
DPCM technique belongs into a set of compression
methods called predictive techniques. The value of the
next voxel in the dataset is always predicted from the
previous samples and the difference between the
predicted and actual value is stored instead of actual
value.
 Yeo and Liu introduced a method for compression of
voxel data based on discrete cosine transform (DCT) in
1995 [14]. This algorithm at first divides the voxel
space into blocks consisting of 8×8×8 voxels. Each of
blocks is then encoded with the DCT. In the third step
the algorithm performs the scalar quantization on the

obtained DCT coefficients. In the last step entropy
encoding is performed using a combination of run-length
encoding and Huffman coding. Because the method uses
scalar quantization in the process it performs lossy
compression.
 Chiueh et al. presented an algorithm for compression
of voxel data, which uses discrete Fourier transform
(DFT) in 1997 [15]. Idea behind the algorithm is very
similar to the previously described algorithm presented
by Yeo and Liu. At first the DFT is performed over
blocks of voxel data to obtain Fourier coefficients. Then
the obtained coefficients are quantized and the entropy
encoding is performed. Because of quantization this
algorithm also performs lossy compression.
 Zhu et al. presented another wavelet based algorithm
for compression of voxel data in 1997 [16]. Their
approach applies the wavelet transformation twice. At
first the wavelet transformation is performed over the
whole voxel space. After initial transformation, the
algorithm determines interesting structures and
homogeneous areas in the data and encodes these areas
with an octree. The second wavelet transformation is
then applied on the non-empty and non-homogeneous
blocks of data. This method also performs lossy
compression.
 In 1999 Rodler introduced an algorithm for
compression of volumetric data that was significantly
different from all previously presented algorithms [17].
While other algorithms consider the whole voxel space
as a whole entity, Rodler’s algorithm considers the voxel
space a set of arranged slices. By using this approach the
compression of volumetric datasets becomes very
similar to the compression of digital video and the
introduced algorithm uses many ideas from this field. In
the first step the ‘temporal’ prediction is used for
determining the correlation between consecutive slices.
In the second step 2D wavelet transformation is
performed over the ‘predicted’ slices. Then the obtained
coefficients which lie under the set threshold are
removed and at the end the remaining coefficients are
quantized. Due to usage of quantization and thresholding
this approach performs lossy compression.

3 Problem Solution
As has been already stated, despite the existence of
many algorithms for compression of voxel data none of
them has yet become an official or even ‘unofficial’
standard. It is also hard to even pick one algorithm as the
best, as every one of them has some advantages as well
as disadvantages. For instance, most of the existing
algorithms are strictly oriented towards lossy
compression, which in unacceptable in some fields,
especially medicine. Therefore it is our idea to develop
an algorithm that would try to use as many advantages of

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 265

the other algorithms, while overcoming most of the
disadvantages. Although the algorithm presented in this
paper does not reach the desired goal yet, it represents,
in our opinion, a big step in the right direction.
 The proposed algorithm is based on encoding of the
slices of voxel data with quadtrees and uses comparison
of the quadtrees related to neighboring slices for
determination of data coherence. Each slice is split into
small patches called macro-blocks as first. This approach
is very similar to the techniques used in algorithms for
the compression of digital video. However, algorithms
for the compression of digital video usually use macro-
blocks of constant size, while in our algorithm the size of
the macro-block is variable. Macro-blocks that are
connected to the nodes of the lowest level of the related
quadtree are called basic macro-blocks. The size of the
basic macro-blocks is usually 4×4 or 8×8 voxels. In the
following subsection we present the basic idea behind
the algorithm

3.1 Basic algorithm
For clearance we will at first give description of the
basic quadtree based compression algorithm that was
presented in [7]. The algorithm for the lossless
compression of voxel data using quadtrees consists of
four steps:
• creation of the division tree,
• creation of quadtrees for all slices,
• calculation of difference trees for neighboring slice

and
• entropy encoding.

A detailed description of each step is given in the
continuation of the paper.

3.1.1 Creation of the division tree

Creation of the division tree represents the first step of
the compression algorithm. Division tree is a fully-
grown quadtree. Nodes of the division tree carry
information about the macro-blocks of the mask slice.
Mask slice is an empty slice that is split into macro-
blocks, which are arranged accordingly to the following
rule (called a row order rule):

 At level i the number of macro-blocks is 4i-1 and the

number of macro-blocks in one row is 2i-1. If the index

of the starting macro-block of the row is n, then the

following macro-blocks of the same row are indexed

n+1, n+2, …, n+2i-1.

Each node of the division tree carries the information of
starting coordinates and the size of the macro block
which it represents. Division tree is useful because all
the slices are represented by the same macro-block
structure. By using the division tree we have to store the

information about the position and the size of the macro
blocks only once.

3.1.2 Creation of slice quadtrees

In the second step of the algorithm each slice of voxel
data is encoded with a quadtree. These quadtrees are
called slice quadtrees. Each slice is divided into small
patches, called basic macro-blocks, at first. For each
basic macro-block the average value of the voxels in the
macro-block is calculated.
For each basic macro-block we must also determine
whether is it homogeneous (all voxels in the macro-
block are the same) or non-homogeneous (voxels are not
the same). This information is stored into the appropriate
node of the slice quadtree. The nodes of slice quadtrees
carry the following information:
• index – defines mapping between the macro-block

and the adequate node in the division tree,
• node type – depends on the position of the node in

the quadtree and the values of voxels in the related
macro-block,

• average value – average value of the voxels in the
macro-block,

• pointer to voxel array – a pointer to an external array
of voxel values. When we come across a non-
homogeneous basic macro-block the values of the
voxels have to be stored in an external array.

Encoding of basic macro-blocks produces the nodes of
the lowest level of the slice quadtree. The nodes of
higher levels are obtained with pruning. The pruning
process follows this simple rule:

If all sons of the current node represent homogeneous

macro-blocks with the same average value, then they are

joined into one larger homogenous macro-block.

When such a case occurs, the average value of sons is
forwarded into the father node and all four sons are
removed from the quadtree. If the pruning can not be
performed, the average value of the father node is
calculated from the average values of all four sons. In
this case the father node is an inner node (branch) in the
quadtree. Regarding the position of the node and the
properties of the related macro-block we can now define
three different node types:
• Type 1 – the node is an inner node – branch of the

quadtree. Such node represents a non-homogeneous
macro-block, which consist of smaller macro-blocks.

• Type 2 – the node represent homogeneous macro-
block. The nodes of this type represent the leaves of
the quadtree. However, this leaves are not always on
the lowest level of the quadtree. Since we used

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 266

pruning in the process the slice quadtrees are not
fully-grown quadtrees.

• Type 3 – the node represents a non-homogeneous
basic macro-block. Such node can only appear on the
lowest level of the quadtree. The voxels of the related
basic macro-block must be stored into an external
array. The address of the array is stored into the
pointer to voxel array.

The pruning process is repeated until the nodes of the
highest level are created. In this way the slice quadtree
for one slice is created. This process must be repeated
for all slices. As a final result a set of slice quadtrees is
obtained.

3.1.3 Calculation of slice quadtrees

When the slice quadtrees of all slices are created we can
start determining the similarities between neighboring
slices. For this we use special trees, called difference
trees. A difference tree is a fully-grown quadtree used
for determining equal nodes in two quadtrees. Nodes of
the difference tree have just one parameter:
• IsEqual – which marks whether two adequate nodes

that belong to two slice quadtrees of neighboring
slices are equal or not.

Four tests have to be performed for comparison of two
nodes:
• comparison of node types,
• comparison of average values,
• comparison of sons, if both compared nodes are inner

nodes of the quadtree,
• comparison of voxels, if both compared nodes

represent non-homogeneous basic macro-blocks.

3.1.4 Entropy encoding

In the last step the remaining information are stored. For
more efficient compression we use special entropy
encoding algorithms. The data are stored into two files:
• quadtree structures file (QSF) – stores the

information about the quadtrees,
• voxel data file (VXF) – stores the values of voxels of

non-homogeneous basic macro-blocks. We
previously stored this voxels into external arrays
using pointers to voxel arrays.

We will not provide the actual entropy encoding
algorithm used for encoding the QSF here, because it is
not necessary for understanding the basic idea behind
the algorithm. However, the detailed description can be
found in [7]. The entropy encoding algorithm which is
used for storing values of voxels into the voxel data file
is based on the idea that instead of storing the actual
values of voxels, the difference to the average value of

the macro-block is stored. Of course, only the minimal
number of bits required for storing the biggest difference
is used for representation of all difference values of the
macro block.

3.2 Advanced algorithm
Advanced algorithm introduces several new techniques
for determination of coherence and similarities and
entropy encoding. These techniques are used for storing
the values in the voxel data file. We introduce eight
different types of coding by which the values of voxels
of the non-homogeneous basic macro blocks can be
encoded. This coding types can be separated into two
large groups each consisting of four types of encoding.
The first group of coding types exploits only the
properties of the macro-block currently being processed.
The second group of coding types performs analytical
comparison to the adequate macro-block on the previous
slice (called reference macro-block) and exploits the
differences between macro-blocks for more efficient
encoding.
 Clearly, the best possible type of encoding must be
determined before the data is actually stored. To select
the best encoding the typical properties of the macro-
block must be determined at first (average value of the
voxels in the macro-block, maximal absolute data value
in the macro-block, maximal difference to the average
value, number of voxels that are different between the
processed macro-block and the reference macro-block).
Using these properties we can mathematically determine
the number of bits required for storing the data for each
coding type. The coding type that requires the lowest
number of bits is then used for actual storage of the data.
 In the continuation we give a short description of
each of the coding types. Along with the textual
description of the coding types we also present the bit-
mask for each coding. Although bit-masks differ from
one coding type to another all coding types include two
common parts. The first common part is the type
number. The type number is a value between 0 and 7 and
is always stored in the first three bits and is required for
the decompression algorithm to choose the correct
decompression routine. The second common part is
number of bits used for storing the values of the macro-
block. Number of bits used for storing the values can of
course differ depending on which type of coding the
algorithm decides to use. The position of this value in
the bit-mask is not the same in all coding types. Let us
remark here, that in the provided graphical
representations of the bit-masks, four bits are used for
storing the number of bits used for value representation.
This of course means that only 1-16 bits can be used for
representing values. However, in the actual
implementation we could simply resize the reserved
space from four to five or more bits if necessary.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 267

3.2.1 Coding macro-blocks using analysis of the

properties of the macro-block

3.2.1.1 Encoding macro-blocks by storing the
differences to the average value.
This coding type is used for storing the differences to the
average value of the voxels in the macro-block. So,
instead of the absolute value of the each voxel a
difference to the average value is stored for each voxel.
Bit mask of this coding type is:

0 0 00 110 0 0 1 0 1 1 0 1 0 1 0 1 0 1 1 ...
type no. of bits

for value
value 1 value 2 value n

3.2.1.2 Encoding macro-blocks by storing absolute voxel
values
This coding type is very similar to coding type 1. The
only difference is that the actual value of the appropriate
voxel is stored.

0 0 00 110 1 0 1 0 1 1 0 1 0 1 0 1 0 1 1 ...
type no. of bits

for value
value 1 value 2 value n

3.2.1.3 Encoding macro-blocks using run-length
encoding
The third coding type represents the macro block by
using run-length encoding (RLE). The RLE can be
performed in either horizontal or vertical direction, thus
we can represent the coding direction with just one bit,
which immediately follows the type number. The bit-
mask of this coding type is

0 0 10 001 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 ...
type no. of bits

for value
value 1 number

of repeats
value 2

0 0 1 1
number
of repeats

dir.

3.2.1.4 Encoding single voxels
It often happens that all of the voxels in a macro block
except one represent empty space. We introduce a
special coding type for representing such macro blocks.
This coding type only stores the value of the voxel and
the position of that voxel inside the macro-block. Here is
the bit-mask:

0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1
type no. of bits

for value
value position

3.2.2 Coding macro-blocks using the analytical

comparison to the reference macro-block in the

previous slice

The second group of coding types consists of coding
types which are based on the comparison of the
processed macro-block with the adequate macro-block

on the previous slice. Such macro-block is called a
reference macro-block. However, for better compression
we also compare the processed macro block with slightly
offset reference macro-blocks. This is useful as some
entities can slightly move, grow or shrink from one slice
to another, as shown in Fig. 1. We can efficiently
determine and exploit these occurrences by using offset
reference macro blocks.

Fig. 1: Two adjacent slices taken from a real dataset with

marked significant differences.

3.2.2.1 Encoding macro-blocks by storing the
differences to the values of the reference macro-block
Using this coding we calculate the difference between
the value of the voxel in the processed macro-block and
the corresponding voxel in the reference macro-block
and store those differences. Bit mask of the coding type,
if the position of the reference macro-block corresponds
to the position of the processed macro-block is:

1 1 00 0 0 1 0 1 1 0 1 0 1 0 1 1 1 1 ...
type no. of bits

for value
difference 1 difference 2

0 0 1 1
difference noffset:

no

Bit mask for the case where the offset reference macro
block was used:

1 1 00 0 0 1 0 10 1 0 1 0 ...
type no. of bits

for value
x

offset

1 0 1 1
difference noffset:

yes

1 0 1 0 1
difference 1

1
y

offset

The difference between the bit-mask for using non-offset
and bit-mask for using offset reference macro-blocks is
the same for all coding types. Therefore, in the
continuation we will present only the bit-mask for non-
offset reference macro-blocks.

3.2.2.2 Encoding macro-blocks by using the masking
table and storing the differences to the values of the
reference macro-block
This coding type expands the coding type presented in
3.2.2.1 by introducing the mask table. The mask table
tells which voxels on the processed macro-block actually
differ from corresponding voxels in the reference macro-

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 268

block. If the voxels are equal we store the value 0 into
the appropriate position in the mask table. However, if
the voxels are different, we store the value 1 into the
appropriate position in the mask table and store the
difference. Bit-mask:

1 0 00 1 0 1 0 1 1 0 1 1 1 ...
type no. of bits

for value
mask table

0 0 1 0
difference n2offset:

no

1 0 0 0 1
difference n1

1...

3.2.2.3 Encoding macro-blocks by using the masking
table and storing the differences to the average value
This coding type is very similar to coding type 3.2.2.2.
Again the mask table is used to mark which voxels
differ, however, instead of storing the difference
between the values of corresponding voxels, the
difference between the voxel value and the average
value of the macro-block is stored. Bit-mask:

1 0 01 0 0 1 0 1 1 0 1 1 1 ...
type no. of bits

for value
mask table

0 0 1 0
offset:
no

1 0 0 0 1
offset to avg.
value n1

1...
offset to avg.
value n2

3.2.2.4 Encoding macro-blocks by selecting the smaller
value from the difference to the value of the reference
macro-block and the difference to the average value
The last coding type introduces a combination of two
previously described coding types. Again, the mask table
is used, but the mask table has a slightly different
meaning in this coding. At first we calculate the
difference between the value of the voxel and the value
of corresponding voxel in the reference macro-block
(lets call this value difference). Then we calculate the
difference between the voxel value and the average
value of the macro block (lets call this value offset to
average). If difference is smaller than offset to average,
then we write 1 in the appropriate position in the mask
table and store the difference, otherwise we enter 0 into
the mask table and store the offset to average. The bit-
mask of this coding looks like:

1 0 01 1 0 1 0 1 1 0 1 1 1 ...
type no. of bits

for value
mask table

0 0 1 0
offset:
no

1 0 0 0 1
difference or
offset to avg.

1...
difference or
offset to avg.

3.3 Results
Presented algorithm has been tested on various real
voxel datasets. Tests have proven that the presented
algorithm can efficiently compress various types of
volumetric data without losses. The achieved
compression ratio is between 2.5 and 4.5. Detailed
results are presented in Table 1. We have also compared
our compression algorithm to the two most popular
general-purpose compression methods ZIP and RAR. In
about 80% of cases our special-purpose algorithm
performed better compression. However, we must also

take into consideration that the quadtree based
compression supports progressive reconstruction, which
is impossible if the data is compressed using a general-
purpose compression algorithm. An example of
progressive reconstruction and visualization of a voxel
dataset is shown in Fig. 2.

Quadtree based compression Dataset Original
size QSF

(KB)
VXF
(KB)

Together
(KB)

Human 217.600 9.395 45.086 54.481
Bunny 184.832 2.595 54.233 56.828
Pelvis 89.088 975 21.578 22.553
Backpack 190.976 2.338 41.360 43.698
Colon 226.304 3.425 91.345 94.770
Aneurism I 262.144 3.541 89.442 92.983
Liver 119.808 2.036 48.011 50.047
CT head 14.464 225 5.122 5.347
MR brain 13.952 216 6.203 6.419
Engine 14.080 231 4.040 4.271
Head 20.352 310 6.536 6.846
Tooth 20.608 198 3.999 4.197
Aneurism II 16.384 75 272 347
Foot 16.384 248 4.056 4.304
Bonsai 16.384 260 2.808 3.068
Skull 16.384 474 8.923 9.397
Teapot 11.392 164 1.015 1.179

Table 1: Results of the usage of the quadtree-based
algorithm for compression of volumetric data on various

real datasets.

a) b)

c) d)

Fig. 2: Progressive reconstruction and visualization

shown on the Aneurism dataset.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 269

4 Conclusion
In the paper we have presented a novel algorithm for
lossless compression of volumetric data. While the basic
idea of the algorithm is the same as in our previously
published work, we upgraded the algorithm by
introducing several new techniques for determination of
similarities between slices of voxel data and entropy
encoding. These new techniques significantly improve
the efficiency of the algorithm, what has been proven by
testing the algorithm on various datasets.
 In the future we will try to additionally improve the
efficiency of the algorithm by introducing some
techniques that have until now only been used in lossy
compression algorithms. We would also like to expand
our algorithm into 4D space, so that it could also be used
for compression of time-varying volumetric datasets.

Acknowledgments
We are grateful to the Slovenian Research Agency and
to the Ministry of Defence of Republic of Slovenia for
supporting this research under the project M2-0141 -
Development of a system for visualization of realistic
terrain required for training battle crews.

References:

[1] Kaufman, A. E., Voxels as a Computational
Representation of Geometry, SIGGRAPH Course

Notes, 1996.
[2] Srihari, S. N., Representation of Three-Dimensional

Digital Images, ACM Computing Surveys, Vol. 13,
No. 4, 1981, pp. 399-424.

[3] Stytz, M. R., Frieder, G., Frieder, O., Three-
Dimensional Medical Imaging: Algorithms and
Computer Systems, ACM Computing Surveys, Vol.
23, No. 4, 1991, pp. 421-499.

 [4] Engel, K., Kraus, M., Ertl, T., High-Quality Pre-
Integrated Volume Rendering Using Hardware-
accelerated Pixel Shading, In: Proceedings of the
ACM SIGGRAPH/EUROGRAPHCIS workshop on

Graphics hardware, Los Angeles, California, 2001,
pp. 9-16.

[5] Ma, K.-L., Lum, E. B., Muraki, S., Recent Advances
in Hardware-Accelerated Volume Rendering,
Computers & Graphics, Vol. 27, No. 5, 2003, pp.
725-734.

[6] Hadwiger, M., Kniss, J.M., Rezk-Salama, C.,
Weiskopf, D., Engel, K., Real-Time Volume

Graphics, A K Peters, 2006.
[7] Klajnšek, G., Žalik, B., Progressive lossless

compression of volumetric data using small memory
load, Computerized medical imaging and graphics,
Vol. 29, No. 4, 2005, pp. 305-312.

[8] Ning, P., Hesselink, L., Fast Volume Rendering of

Compressed Data. In: Bergeron, D., Nielson, G.
(eds.) Proceedings of the 4th conference on

Visualization '93, San Jose, California, 1993, pp. 11-
18.

[9] Hesselink, L., Ning, P., Vector Quantization for
Volume Rendering, In: Proceedings of the 1992
Workshop on Volume visualization, Boston,
Massachusetts, pp. 69-74.

[10] Muraki, S., Volume Data and Wavelet Transforms.
IEEE Computer Graphics and Applications, Vol. 13,
No. 4, 1993, pp. 50-56.

[11] Ginesu, G., Giusto, D.D., Pearlman, W.A., Lossy
to lossless SPIHT-based volumetric image
compression, Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal

Processing (ICASSP '04), Montreal, Quebec, Canada
2004, pp. 693-696.

[12] Hashimoto, M., Matsuo, K., Koike, A., High
efficiency loss-less coding method with 3-
dimensional wavelet transform for volumetric data,
IEEE Nuclear Science Symposium Conference

Record, Portland, Oregon, USA, 2003, pp. 2780-
2784

[13] Fowler, J.E., Yagel, R., Lossless Compression of
Volume Data. In: Kaufman, A., Krueger, W. (eds.)
Proceedings of the 1994 symposium on Volume

Visualization, Tysons Corner, Virginia, USA, 1994,
pp. 43-50.

[14] Yeo, B., Liu, B., Volume Rendering of DCT-Based
Compressed 3D Scalar Data. IEEE Transactions on
Visualization and Computer Graphics, Vol. 1, No. 1,
1995, pp. 29-43.

[15] Chiueh, T., Yang, C., He, T., Pfister, H., Kaufman,
A., Integrated Volume Compression and
Visualization. In: Yagel, R., Hagen, H. (eds.),
Proceedings of the 8th conference on Visualization

'97, Phoenix, Arizona, 1997, p. 329.
[16] Zhu, Z., Machiraju, R., Fry, B., Moorhead, R.,

Wavelet-Based Multiresolutional Representation of
Computational Field Simulation Datasets. In:
Proceedings of the 8th conference on Visualization

’97, Phoenix, Arizona, 1997, p.151.
[17] Rodler, F.F., Wavelet Based 3D Compression for

Very Large Volume Data Supporting Fast Random
Access. In: Proceedings of the 7th Pacific

Conference on Computer Graphics and Applications,
Seoul, Korea, 1999, pp. 108-117.

6th WSEAS Int. Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, Tenerife, Spain, December 14-16, 2007 270

	Text4:

