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Abstract: - In this paper the three-dimensional system of the partial differential equations as a model of the 
diffusion with the sorption process for the porous layered medium with the semi-permeable interlayers is 
proposed. The generalized integral parabolic spline is used for the approximate transformation of the 2-D 
problem into the simpler 1-D system by the original method of the conservative averaging. This system of the 
1-D partial differential equations with continuous coefficients fulfills in the averaged sense all the 
conservation laws of the original problem. The finite difference scheme for solving the averaged system is 
offered. 
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1   Introduction 
Many real processes take place in layered systems, 
especially in the underground systems, consisting of 
separate layers with different thickness and different 
physical properties [1]-[3]. Very often in the 
groundwater flows such systems are composed from 
the two types of layers which are located 
alternatively, e.g. aquifers and aquitards [1]. In these 
cases, in the mathematical model of such processes, 
we have a jump in the coefficients of differential 
equations on the surfaces between two layers. The 
usage of standard mathematical methods by 
discontinuity of the coefficients of the PDE (partial 
differential equations) brings out additional 
difficulties.  
One of the authors has developed the conservative 
averaging method and he introduced a special new 
type of the spline for wide class of PDE problems 
with discontinuous coefficients [4]-[10].  
In this paper we give the statement and propose the 
numerical method (finite difference scheme) for the 
layered system consisting of two different types of 
the layers: main and interlayers (semi-permeable 
layers). This type of the models automatically 
reduces (if the thickness of the interlayers trends to 
zero) to the models, which have only main layers - 
considered in previous works, e.g. [11]. Proposed 
method differs from methods traditionally used in 
various diffusion and transport processes in natural 
or artificial porous media. It allows analyzing 
broader spectrum of a physical phenomena and 
wider variety of the geometrical and physical 

parameters. In the paper [12] was considered a class 
of mathematical models for transport processes in 
layered strata with interlayers oriented for the 
applications to underground problems. The model 
for the transport process with sorption in the two-
layer system with a one interlayer was considered in 
[13].  
Here we bear in mind the diffusion and sorption 
processes in the traditional wood industry [14]-[16], 
as well as connected and oriented to a sustainable 
development and advanced zero emissions 
technologies.  
 
 

2   The Mathematical Model of the 

Diffusion-Sorption in Layered System 
For a homogeneous orthotropic medium the 

concentration fields’ ( ) ( )( ), , , , , ,U x y z t V x y z t  

equations for a dispersion-reaction process (without 
convection) can be written in the following form, 
e.g. [2]: 

( ) ( )

( ) ( )

( ) ( )

1 , ,

x y

u u

z

u

x y

v v

U U U
D D

t x x y y
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z z
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t x x y y

 ∂ ∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂ ∂   
∂ ∂ + + ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ = + +  ∂ ∂ ∂ ∂ ∂   

 (1) 
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 (2) 

The reaction terms in the equations (1), (2): the 

functions ( , ), 1,2iF U V i =  can be very different 

(linear, depending on one or several parameters, 
nonlinear etc.) for various processes.  
We will restrict us by the narrow class in sense of 
the process (in comparison with the class of 
equations (1), (2)), but by the broader class in 
geometrical sense – the multilayer system with 
interlayers. The simplest typical example of such 
interest is a veneer, exacter plywood. 
 
2.1 The description of the Geometry of the 

Layered Domain 

Let it be given the domain 3RM ⊂ , where M  is a 
multilayered domain with the base as semi-bounded 

(or bounded) in the plane 2( , )x y D R∈ ⊂  and with 

the height H b a= − : 

[ ]{ }10 , +==∈⊗= NzbzazDM . 

 

 
Fig.1 

Multilayered domain with interlayers 
 

So, in this paper we consider the layered system 
consisting of alternating two different types of 
layers: main and interlayers (semi-permeable 
layers). 
 
2.2 Mathematical Statement of the Diffusion-

Sorption Problem for the Layered Domain 
The diffusion-sorption process in the i th−  main 
layer (type aquifer for underground processes, see, 

e.g., [1], [2], [11], [12]) (for ( ) Dyx ∈,  and 

1/ 2 , 0,i iz z z i N+< < = ) is described by a 

following system of the two partial differential 
equations together with the sorption kinetic 
function: 

( )xi i i

i

U V U
D

t t x x

∂ ∂ ∂∂  
+ = + ∂ ∂ ∂ ∂ 
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( )
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∂ ∂ ∂ ∂  
+ +   ∂ ∂ ∂ ∂  
∂

= −
∂
=

 (3) 

Evidently we can represent the first (most 
complicate equation) in the form with the source 
type term: 

( ) ( )

( ) ( )

( )

,

,

x yi i i
i i

z i
i i i i

i
i i i

U U U
D D

t x x y y

U
D W U

z z

V
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t

β

β

 ∂ ∂ ∂∂ ∂ = + +  ∂ ∂ ∂ ∂ ∂   
∂∂  + + − ∂ ∂ 

∂
= −

∂

 (4) 

( ).i i iV F W=  

In the equations for the interlayers (for 0, 1i N= − ) 

we neglect the possible diffusion parallel to the 
layers disposition (such assumption is typical for 
underground processes, see [1]-[3] and [17] and is 
natural for our class of processes too): 

( )

( )

( )
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1/ 2 1/ 2 1/ 2
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1/ 2 1/ 2 1/ 2

,

,

zi i
i

i i i

i
i i i

U U
D

t z z

W U

V
U W

t

β

β

+
+

+ + +

+
+ + +

∂ ∂∂  =  ∂ ∂ ∂ 
+ −
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= −
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 (5) 

( )1/ 2 1/ 2 1/ 2 .i i iV F W+ + +=  

In this paper we will restrict us by two types of 

source (sorption kinetics) functions ( )WF : 

a) linear: ( )
W

F W
γ

= ; 

b) with saturation: ( ) .
W

F W
Wγ δ

=
+

 

The initial conditions are in the traditional form: 

( )
( )

( )
( )

0
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0
1/ 2 1/ 20
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1/ 2 1/ 20

, , ,

, , ,

, , ,

, , .
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U U x y z

V V x y z
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=

+ +=

=

+ +=

=

=

=

=

 (6) 

The boundary conditions on the outer planes (on the 
top and the bottom of the first and the last main 
layer) are in general form: 

( ) 0
0 0 0 0 0( ) ( , , ),z U
D U a y z t

z
ν λ

∂
− + = Φ

∂
 (7) 
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1 1 1( ) ( , , ).z N

N N

U
D U a y z t

z
ν λ

∂
+ = Φ

∂
 (8) 

Such form of the boundary conditions is typical for 

the partial differential equations. Indeed, if 0 0ν =  

( )1 0ν = and 0 11( 1),λ λ= = we obtain Dirichlet 

BC, if ( )0 11 1ν ν= = it gives Neumann BC (for 

0 0λ = 1( 0))λ = and Robin BC (for 0 0 0ν λ >  

1 1( 0)).ν λ >  

We assume fulfilling one of all traditional BC on the 

lateral boundary [ ]{ },D z a b∂ ⊗ ∈ . Its specific 

properties don’t play an important role for the 
proposed method of the conservative averaging, but, 
of course, they are important by solving concrete 
problems. 
 

 

3   Problem Solution 
Further, to explain the main idea, we 
concentrate our attention to the 2-D problem 
(without y − argument). We show how the 
generalized integral parabolic spline [7], [10], 
[12] allows diminishing by one the dimension 
of the original problem: instead of the 2-D 
problem for the partial differential equation we 
will obtain a system of the 1-D partial 
differential equations with continuous 
coefficients. The order of this system is equal to 
the number of main layers. Then for the 
numerical solving of this system of the 1-D 
partial differential equations will be proposed a 
special difference scheme of the type of the 
classical Peaceman-Rackford scheme (the role of 
second space coordinate in our case plays the index 
in main layer).  
In case of full the 3-D problem we could use so 
called additive or locally one-dimensional finite 
difference schemes [18]. 
 
3.1   Generalized Integral Parabolic Spline  
Let it be given a continuous, piecewise-smooth 

function ( ) [ ]bazzU ,, ∈ , for which the first 

derivative ( )U z′  has first kind discontinuities in 

the N2  different inner points Nizz ii ,1,, 2/1 =+ :  

( ) ( )
( ) ( )

1 1/ 2 1/ 2 1/ 2

1/ 2

0 0 ,

0 0 .

i i i i

i i i i

D U z D U z

D U z DU z

− − − −

−

′ ′− = +

′ ′− = +
 (9) 

The continuity property of the function ( )zU  gives 

following N2  equalities: 

( ) ( )
( ) ( ).00

,00 2/12/1

+=−

+=− −−

ii

ii

zUzU

zUzU
 (10) 

Here the diffusion function (coefficients) ( )zD  is a 

piecewise-constant function (practically 
( ) ( )

1/ 2 1/ 2( )z z

i i i iD D D D− −= =  from previous sub-

section):  

( )
( )

( )
1/ 2 1/ 2

1/ 2

, , ,

, , .

i i i

i i i

D z z z
D z

D z z z

− −

+

∈
= 

∈
  

We assume fulfilling the properties 

iiii DDDD <<<< −−− 2/112/1 , . Here must be 

mentioned that the bzz NN == ++ 12/1 , it means the 

function ( )zU  can neither end nor begin with a 

linear part (in the physical sense: we start and finish 
with the main layer, not the interlayer) of the 

segment [ ]ba, . 

Additionally there are given the 1+N  values iu of 

the function ( )zU  over the sub-segments [ ]2/1, +ii zz : 

( )
1/ 2

1/ 2

1
,

, 0, .

z
i

i

i z
i

i i i

u U z dz
H

H z z i N

+

+

=

= − =

∫�
�

�

 (11) 

Further, it is known, that on the sub-segments 

[ ] Nizz ii ,0,, 2/1 =+  the function can be 

approximated by the linear function. Finally, the BC 
of type (7), (8) must be fulfilled. 
In the paper [10] it was proved that here exists 
exactly one spline fulfilling all mentioned 
conditions. We will seek this spline in the form: 

( )

( ) ( )
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( ) [ ]




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



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=∈
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

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
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−
+−+

=

−
−

−−−−

+
+

.,1,
2

~

,,,~

;,0,
2

~,,

,
12

~

~

~
~~~~

~

2/1
2/1

2/12/12/12/1

2/1
2/1

2

Ni
zz

z

zzzzzmu

Ni
zz

zzzz

G

HD

zz
ezzmu

zS

ii

i

iiiii

ii

iii

i

ii

i

iiii

(12) 

Here 
i

i
i

D

H
G

~
~

=  are the lengths parameters reduced 

by the diffusions coefficient, which can be called as 
“characteristic diffusion lengths”. Similarly we 
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introduce the N  additional lengths parameters for 

second type of layers (interlayers) 

1/ 2
1/ 2

1/ 2

, 1,i

i

i

H
G i N

D

−
−

−

= = , which will be used 

immediately. The continuity property (10) of the 
generalized integral parabolic spline (GIPS) at the 

points 1,0,2/1 −=+ Nizi  gives following 

equalities: 

2

6

~
~

2

~
~~

2/1
2/12/12/1

+
+++ −=

=++

i
iii

i
i

i
iii

G
mDu

G
e

G
mDu

 (13) 

The same property at the points 1,0,1 −=+ Nizi  

gives similar equalities: 

1 1
1 1 1 1

1/ 2
1/ 2 1/ 2 1/ 2

2 6

.
2

i i

i i i i

i

i i i

G G
u D m e

G
u D m

+ +
+ + + +

+
+ + +

− + =

= +

� �

� � �

 (14) 

The conjugation conditions (9) lead to the equalities 

for 1,0 −= Ni : 

1/ 2 1/ 2 1 1 1i i i i i i i iD m e D m D m e+ + + + ++ = = −� � � �  (15) 

The equalities (15) allow us to exclude 2/12/1 ++ ii mD  

and 11
~

++ ii mD  from the (13), (14). We obtain the 

following generalized chain of the equalities for 

1,0 −= Ni : 

( )
( )
( )ii

iiiiii

iiiii

uu

GeGGGe

GGGmD

~~2

~~
3

2~
23/

~~

~
2

~~

1
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12/1

−=

=++++

+++

+

++++

++

 (16) 

And for the Ni ,1=  we obtain: 

( )
( )
( )1

1112/1

12/1

~~2

~~3/2
~

23/
~~

~
2

~~

−

−−+−

−−

−=

=−+++

+++

ii

iiiiii

iiiii

uu

GeGGGe

GGGmD

 (17) 

The final step consists of excluding the term iimD
~  

from last two chains of equalities. We obtain: 

( )0 0 0 0 1

0 1 0 0 0 1

1

,

a b e b e

f u f u f u− +
−

+ + + =

= − +

� �� � �

� � �� � �

 

( )1 1

1 1

1

, 1, 1,

i i i i i i i

i i i i i i

a e a b e b e

f u f u f u i N

− +

− +
− +

+ + + + =

= − + = −

� �� � � � �

� � �� � �

 (18) 
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1 1

1
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N N N N N

N N N N N N

a e a b e

f u f u f u

−

− +
− +

+ + + =

= − +

�� � � �

� � �� � �

 

Here the coefficients of the linear algebraic system 
have following expressions: 

( )

( )

1 1/ 2 1

1 1/ 2 1

1/ 2 1

/ ,

/( ),

3 / ,

i i i i i

i i i i i

i i i i

a G G G G

b G G G G

f G G G

− − −

+ + +

−
− −

= + +

= + +

= + +

� � � ��

� � � � �

� � � �

 (19) 

1/ 2 1

1/ 2 1/ 2

3/( ),

,

0.

i i i i

i i i

N

f G G G

f f f

G G

+
+ +

− +

− +

= + +

= +

= =

� � � �

� � �  

There are two cases for the expressions of the 

coefficients 1 1 1 1, , ,N NG G u u− + − +
� � � � : 

1. If 00 ≠λ  (and 01 ≠λ ), then 

 
1 0 0 1 1 1

1 0 0 1 1 1

2 / , 2 / ,

/ , / ;

N

N

G v G v

u u

λ λ

λ λ
− +

− +

= =

= Φ = Φ
 (20) 

2. If 00 =λ  (and 01 =λ ), then 

 
1 0 0 1 1

1 0 0 1 1

2 , 2 ,

, .

N N

N N

G v G G v G

u u u u

− +

− +

= − = −

= Φ + = Φ +
 (21) 

We underline an interesting moment regarding the 
GIPS: the system of the linear algebraic equations 
for the calculations of the spline’s coefficients 
contains only the “parabolic part” coefficients. The 
linear part characteristics are represented trough the 
coefficients (19). 
Second important aspect: the GIPS naturally 

transforms to IPS [5], [7], [11] when all 1/ 2i iz z− = . 

The same property holds for the explicit 

representation for the coefficients ie� of the GIPS, 

details are given in [12]: 

( ) ( )0 1

0 1 1 ,
0

.
N

i i i N N i j j

j

e f u f u uγ γ β− +
− +

=

= + +∑� � �� � � �  (22) 

 
3.2   The reduction of the 2-D Problem to the 

1-D System by the Conservative Averaging 

Method 

Similarly as in the paper [12] we introduce 1+N  

values ( )( , ) ( , )i iu x t v x t of the function 

( ) ( )( ), , , ,i iU x z t V x z t  over sub-segments 
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[ ]2/1, +ii zz , i.e., over the main layers: 

( )

( )

1/ 2

1/ 2

1/ 2

1
( , ) , , ,

1
( , ) , , ,

, 0, .

z
i

i i

i z
i

z
i

i i

i z
i

i i i

u x t U x z t dz
H

v x t V x z t dz
H

H z z i N

+

+

+

=

=

= − =

∫

∫

�

�

�

 (23) 

The integration over the appropriate main layer, 
approximation the mass fluxes on lines between 
layers and interlayers and usage of the 
representation (22) finally gives (details are given in 
the papers [11], [12]): 

( ) ( )

( ) ( )

( )

( )

1 1
0

2
,

,

.

xi i

i i i i

N

j j i j j j
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i i i

i i i

u U
D w u

t x x

u u u u
H

v
u w

t

v F w

β

γ γ

β

+ −
+ −

=

∂ ∂∂  
= + − + ∂ ∂ ∂ 

 − + − 

∂
= −

∂
=

∑
�  (24) 

The initial conditions take the form: 

( )
( )

0

0

0

0

,

.

i it

i it

u u x

v v x

=

=

=

=
 (25) 

Finally, must be added the concrete boundary 
conditions.  

 

3.3   The Alternating Direction Finite 

Difference Scheme for 1-D System (24) 
We construct the finite difference scheme which is 
similar with the classical Peaceman-Rackford 
scheme. In our case the role of the second space 
direction will play the index (number) of layer. This 
finite difference scheme can be written in the 
following form. In the first stage we solve following 
three-diagonal system of difference equations by 
factorization method:  

( ) ( )

( ) ( )

( ) ( )
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1/ 2, ,

, , ,
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1, , 1, ,

1, , 1, ,
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2
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ni k i k x n

i xx i k i i k i k

n

i i k i k i i k i k
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i i k i k i i k i k
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D u w u

u u u u

u u u u
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β
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+
+

++ −
+ −
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+ −

≠

−
= Λ + −

 + − + − + 

 − + − ∑
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Here we have introduced traditional for finite 
difference method notations: 

( )
,

, , , ,

, 1 , , 1

, 2

( , ),

,

2
.

n

i k i k n

n n n

i k i k i k i k

n n n

i k i k i kn

xx i k

x

u u x t

w u w u

u u u
u

h

+ −

=

− = −

− +
Λ =

 

For the linear sorption kinetic the practical solution 
of this system of the linear algebraic equations is 
clear. In case of the sorption kinetic with saturation 
we propose as first step rewriting the second 
equation in the following form: 

1/ 2
, ,1/ 2 1/ 2

, ,
/ 2

n n

i k i kn n

i k i k

i

v v
w u

β τ

+
+ + −

= − . 

In the second step we substitute this representation 

for 1/ 2
,
n

i kw
+  in the first and the last difference 

equations. 
In the second stage we solve by factorization 
method following the three-diagonal system in the 
x − direction of the difference equations:  

( )

( ) ( )

( ) ( )

( )

( )

1 1/ 2
1/ 2, , ( ) 1

, , ,

1/ 2

1, , 1, ,

1, , 1, ,

1 1/ 2
1/ 2, ,

, ,

1/ 2 1/ 2
, ,

/ 2

2
,

0,
/ 2

.

n n
ni k i k x n

i xx i k i i k i k

n

i i k i k i i k i k

n

j j k j k j j k j k

j ii

n n
ni k i k

i i k i k

n n

i k i i k

u u
D u w u

u u u u

u u u u
H

v v
w u

v F w

β
τ

γ γ

γ γ

β
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+ +
++

++ −
+ −

+ −
+ −

≠

+ +
+

+ +

−
= Λ + −

 + − + − + 

 − + − 

−
+ − =

=

∑
�

 

The adding and using of the concrete initial and 
boundary conditions are self evident and can be 
omitted.  
Also evident is the other possibility to propose the 
one stage finite difference scheme, based on the 
matrix factorization: the representation of the system 
of partial differential equations as the differential 
equation vector.  
For finding the unknown functions for all main 
layers we can use the generalized integral 
parabolic spline (12) and reconstruct the 
distribution of the concentration fields in 
the z − direction. After this step we can reconstruct 
the linear distribution of the concentration fields 

1/ 2 1( , , )i k nU x z t+ +  in the interlayers. 

For the underground processes the system of the 
partial differential equations (3) (or (4)) can contain 
additional convective terms, see, e.g. [11], [12], 
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[19]. Self evident is generalization of the 
conservative averaging method for this case. 

 
 

4   Conclusion 
The original conservative averaging method and the 
generalized integral parabolic spline allows to 
transform the 2-D diffusion-sorption problem for the 
layered stratum with interlayers to the 1-D system of 
the PDE with continuous coefficients and with order 
of the system of the differential equations equal to 
the number of productive layers. The finite 
difference scheme for the solution of the obtained 
system of partial differential equations is proposed. 
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